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This article introduces the concept of a generalized activity space to bridge area-based and activity-based

representations of geographic context. We argue that microscale space–time paths fail to account for

contextual determinants of behavior, because they emphasize “contacts” over “contexts,” a problem that

could be solved, in part, by using a broader “generalized” representation of geographic context. This article

develops the idea of a generalized activity space and empirically tests the viability of the concept. Support

for the viability of the idea is identified through analysis of 34,500 trips by 7,550 individuals in Atlanta. We

find that demographic characteristics and residential location jointly shape a person’s geographic context.

Through a series of hypothesis tests, we find evidence that these location–demographic groupings are

generalizable; that is, people with similar socioeconomic backgrounds and residential locations exhibit similar

generalized activity spaces. Residential location, by itself, however, is not an effective descriptor of the

configuration of a person’s context. We argue that generalized activity spaces have potential to inform study

of how the environment influences behavior by allowing a more robust consideration of interplay between

socioeconomic characteristics and the use of space. Key Words: activity space, context, environment-behavior,
neighborhood effects.

I
n a 1969 address to regional scientists Torsten

Hagerstrand outlined the principles of time geog-

raphy. Time geography is a representational sys-

tem that recognizes that human activities are

embedded in space and time and thus are constrained

by them. Hagerstrand motivated this idea by reference

to a “twilight zone” between biographical analysis (of

the kind conducted by historians) and the analysis of

areal data (as is done by regional scientists). Time

geography was envisioned as a system to establish

“coherence between the two ends of the scale”

(Hagerstrand 1970, 9). Since Hagerstrand’s initial for-

mulation, enormous progress has been made extend-

ing and operationalizing its concepts (Miller 1991,

2003; Kwan 2000, 2010; Mennis, Mason, and Cao

2013; Patterson and Farber 2015). The widespread

availability of Global Positioning Systems (GPS) and

mobile devices has increased the contemporary rele-

vance of Hagerstrand’s ideas. Fifty years later, though,

researchers still bemoan the fundamental problem

Hagerstrand identified. Schl€apfer et al. (2021) in

Nature noted, “the link between this microscopic

behaviour and the temporal spectrum of recurrent

mobility fluxes arising from an entire population is

missing” (522). Although the literature that directly

engages with time-geographic concepts has remained

largely contained to the discipline of geography, the

basic idea of looking at movement in space and time

has spread well beyond the discipline.
The broad body of work on human movement

contains within it fundamental tensions. Some of

these tensions relate to epistemic differences

between disciplines, for example, the orientation of

physicists toward generalization based on statistical

properties of phenomena compared to social scien-

tists’ orientation toward theory built on the observed

particulars of place (O’Sullivan and Manson 2015).

Many of these tensions, however, are genuine prob-

lems in which well-grounded theories, observational

studies, or both disagree. For example, decades of

work in transportation research find that the charac-

teristics of individuals (location, wealth, stage in the

life course) are fundamental drivers of human spatial

behavior, but recent work in physics finds that “high

degree of temporal and spatial regularity” regardless

of these demographic characteristics (Gonz�alez,
Hidalgo, and Barab�asi 2008, 779). Furthermore,

within the social sciences there is disagreement

between those who believe sociospatial context is

individually constructed through spatiotemporal

activity versus those who see it as collectively con-

structed through networks, institutions, and struc-

tural forces (we refer to these, respectively, as the

individualist and collectivist perspective).
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In this article we introduce the concept of a gen-

eralized activity space in an attempt to reconcile

these tensions. Generalized activity spaces apply a

geodemographic lens to the problem of context by

arguing that similar types of people might have simi-

lar types of generalized activity spaces. That is, by

knowing about a person’s socioeconomic and demo-

graphic characteristics one might be able to make

inferences about their activity space based on the

activity spaces of other similar individuals. Generalized

activity spaces provide a way to refine the parameters

of the movement models identified in physics and in

so doing link them with the social scientific literature.

Generalized activity spaces also provide a way to rec-

oncile the tension between the individualist and col-

lectivist views of social context. This article describes

these tensions in more detail, introduces the concept

of a generalized activity space, and then attempts to

develop empirical evidence for its viability as a con-

cept. This work is by no means a proof of generalized

activity spaces: Our goal is to introduce the idea and

begin a conversation on how to reconcile tensions in

the study of human environmental and social con-

texts. We believe such a reconciliation is necessary to

advance our understanding of how human behavior

shapes and is shaped by the environment.

Sociospatial Context

Decades of work in public health, sociology, and

other social sciences finds that area of residence,

often delimited by some type of census geography,

can have important impact on well-being and

human development. The term neighborhood effects is
a catch-all for this interdisciplinary body of work.

The neighborhood effects literature asks, “To what

extent are geographic patterns in health and/or other

social outcomes due to neighborhood-level charac-

teristics as opposed to individual or family-level

characteristics?” This question can be difficult to

answer because people are often clustered (or

segregated) geographically by race, ethnicity, or

socioeconomic status. The close linkage between

demographic factors and area of residence makes it

difficult to statistically separate “compositional

effects” (e.g., age, racism, or poverty) from the

“contextual effects” of neighborhoods or other types

of places. Kwan (2012) and others have noted that

the identification of neighborhood effects is compli-

cated by uncertainty in the appropriate geographic

definition of social context. Work by Spielman and

Yoo (2009) has shown that changing the geographic

definition of a person’s neighborhood can have a

profound effect on statistical inference.
Richardson et al. (2013) argued that the solution

to this problem lies in analysis of high-resolution

activity data: “Life paths of individuals collected

with GPS/GIS methods can provide more accurate

assessment of exposures to environmental or social

risk factors” (1391). The Richardson et al. (2013)

argument that space–time paths provide a “more

accurate” assessment of individual environmental

contexts is what we refer to as the individualist per-

spective on social context. This stands in contrast to

the collectivist view of social context that focuses

on exogenous institutional and social forces that

structure and shape life. The collectivist view is not

divorced from space, as it argues that space matters

because it structures access to opportunities and sup-

ports but that not all socially meaningful forces are

transmitted via proximity.
The literature on space–time paths highlights the

individualist–collectivist divide. Hagerstrand’s con-

ception of time geography was deeply connected to

thinking about how space and time structure inter-

personal interactions. Giddens (1985) criticized the

time geographic framework, though, because it

stresses the physical location of a person and hence

neglects to account for broader social forces on

behavior. Giddens (1985) noted that Hagerstrand’s

time geography emphasizes “the corporeality of the

human being, in structured space-time contexts,” and

treats individuals “independently of the social settings

they confront in their day-to-day lives” (270).

Giddens’s point is that location matters not only

because of the direct physical exposures it provides;

location structures interactions with institutions, poli-

cies, and cultures that are key social determinants of

health and behavior (Diez-Roux 1998; Macintyre,

Ellaway, and Cummins 2002; Browning and Cagney

2003). The collectivist perspective is that critical ele-

ments of sociospatial context are place specific but

not transmitted through geographic mechanisms such

as exposure via proximity.

The application of a time geographic perspective

to the measurement of sociospatial contexts does not

jibe with the collectivist conceptualization of spatial

contexts in the social sciences. Historically, in the

social sciences, context has been seen as important

because it is collectively constructed and not
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“personal.” Abbott (1997), in describing the influen-

tial Chicago School of Sociology, emphasized the

collective nature of space: “no social fact makes any

sense abstracted from its context in social (and often

geographic) space and social time. … Every social

fact is situated, surrounded by other contextual facts

and brought into being by a process relating it to

past contexts” (1152). Contemporary theoretical

concepts, like social capital and collective efficacy,

are properties of collective contexts that can have

positive spatial externalities; for example, the will-

ingness of people to intervene on behalf of others

can have broad impacts (Sampson, Morenoff, and

Gannon-Rowley 2002; Sampson 2012). Browning

et al. (2006) found that unequal distributions of

community resources produced conditions that made

residents of some areas more vulnerable than others

to the 2003 Chicago heat wave. Traditional place-

based social scientific analysis, for all of its shortcom-

ings, uses area of residence (place) as a proxy for a

complex set of forces, including cultural, economic,

and political. Schulz and Northridge (2004) saw phys-

ical exposures as one element in a complex multiscale

ecosocial system that connects place to health out-

comes. Radil, Flint, and Tita (2010) argued that “The

ability of spatial analysis to incorporate the relative

location of social actors, and the linkages between

them, can, paradoxically, atomize actors being studied

through a ‘spatial fetishism’ that ignores or is unable

to address the social relations that construct the

spaces within which actors operate” (308). An exclu-

sive focus on an individual’s location in space fails to

capture broader social context.
Stated simply, Giddens and others suggest that

microscale time geographic analysis of individual

behavior is vulnerable to the conflation of location

and context. Location structures social and environ-

mental context but does not fully reveal it. This cri-

tique of time geography can seem counterintuitive.

Time geography is inherently concerned with social

relations and how they constrain activity spaces.

Time geography emphasizes “contacts” (direct social

interactions such as coupling constraints) over

“contexts” (neighborhoods, place-based norms, cul-

ture, social supports), which might operate through

sociospatial mechanisms other than colocation.

Space–time paths emphasize the corporeality of

human experience and neglect the fact that loca-

tions that people do not enter can influence behav-

ior. A child who lives near an open-air drug market

might actively avoid it. Even though she never

enters the space where the danger exists, it could

influence her behavior, activity space, and well-

being. Mennis, Mason, and Cao (2013) went a long

way toward addressing this concern through the

incorporation of affective information about loca-

tions within a person’s activity space. Nonetheless,

Giddens’s critique challenges Richardson et al.’s

(2013) assertion that GPS provides “a more accurate

assessment” of exposure to social risk factors than

traditional place-based approaches. We believe that

both location-based and place-based study of social

systems have value and develop the concept of gen-
eralized activity spaces in an attempt to bridge these

two analytic paradigms.

Generalized Activity Spaces

A generalized activity space expands on the indi-

vidual-centric notion of an observed path to con-

sider how groups of similar people behave spatially.

It is “generalized” in that the concept attempts to

abstract away some of the physical geographic and

individual specific constraints that might shape

movement at a microscale to look for patterns or

similarities at the mesoscale. The concept is also

generalized in the sense that it tries to integrate

individual (activity) and communal (place) based

definitions of sociospatial context.
Generalization of activity spaces involves develop-

ing broad group-specific statements about spatial

behavior from the observation of individual behav-

iors. The concept looks beyond generalizations based

purely on the geometry of movement to consider

both demographic characteristics and spatial behav-

ior simultaneously. That is, a generalized activity

space reasons over observations of spatial behavior

and the demographic characteristics of the moving

person. In some sense the concept feels problematic:

Why develop generalized representations if the raw

individual-level information is available?

We believe that the concept of a generalized

activity space, an empirically derived area that delin-

eates a person’s context based on both individual

attributes and the space–time paths of other similar

individuals, might provide a unit of analysis that

overcomes the trap of spatial fetishism described by

Giddens (1985) and Radil, Flint, and Tita (2010).

Generalized activity spaces are aggregations of

space–time paths into mesoscale areal units of
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analysis that are rooted in observed behaviors of

groups of people. They are in a sense a geodemo-

graphic approach to activity spaces in that they

group people with similar characteristics. They are

inspired, to some extent, by Hagerstrand (1970),

who noted that, “over a lifetime he steers his path

through a string of daily prisms, growing in radius

during early years of his life and shrinking at an

advanced age” (14). The concept of a generalized

activity space accommodates changes in the sphere

of spatial activity over the life course, as

Hagerstrand suggested, but does so in way that

attempts to overcome the shortcomings of focusing

only on an individual’s location in space and time.
For example, one type of generalized activity

space might be the “dog bone” in Figure 1. This

type of space might be associated with professionals,

with no children, who have a single stationary place

of employment and residence. For those with a sin-

gle home and job, activity over time might take a

particular form, with activity geographically distrib-

uted around home and work. These expansive areas

form the ends of the bone, and a person’s commut-

ing path forms the shank of the bone. The dog bone

is just a conceptual prototype; it does not refer to a

specific individual or a particular place.
There is already substantial evidence of the exis-

tence of generalized activity spaces. Gonzalez et al.

(2008) found regular patterns of activity in a data

set describing 100,000 mobile phone users over six

months. Song et al. (2010) similarly found that

human movement patterns were regular and predict-

able using 50,000 anonymized call records. Because

these data are anonymized, however, this work

neglects decades of research on travel behavior that

tell us that individual characteristics such as age,

gender, employment, vehicle ownership, and family

structure are all important drivers of travel behavior

(Hanson and Hanson 1981; Pas 1982; Goodchild

and Janelle 1984; Janelle, Goodchild, and

Klinkenberg 1988; Pisarski 2006). Work by Sila-

Nowicka et al. (2016) found that gender and age

conditioned activity spaces using a small sample of

nonanonymized GPS traces covering multiple loca-

tions in Scotland.
For all of its methodological sophistication most

recent work in computational movement dynamics is

limited in its ability to account for known demo-

graphic, social, and economic drivers of mobility.

For example, a comprehensive review titled “Human

Mobility: Models and Applications,” Barbosa et al.

(2018) provided little insight on how to marry tra-

jectories and the demographic characteristics of

moving people. We believe that such models can

(and should) accommodate demographic informa-

tion. The concept of generalized activity spaces

could be easily integrated into work on movement

from physics and other disciplines. For example,

Schl€apfer et al. (2021) developed an argument that

that the probability of visiting a particular loca-

tion—in this case a location is a grid cell on a

map—can be predicted by

piðr, fÞ ¼ li=ðrfÞg

where r is the distance of a person’s home from that

location, f is the number of previously observed visits,

and li is a parameter describing the attractiveness of a

place. From a social scientific perspective, this formula-

tion is challenging because of its total disregard of the

characteristics of a person. It implies that the attrac-

tiveness of a place is universal and race or socioeco-

nomic status does not affect the attractiveness of a

place. Generalized activity spaces provide a way to bet-

ter account for social, demographic, and economic

attributes within these and other equations; for exam-

ple, by making p(r, f) or l conditional on g, where g is
an observed type of generalized activity space.

Despite the arguments in favor a “generalized”

approach to activity, it is not at all clear how these

generalized representations of spatial behavior might

be identified empirically, scaled-up from individual

characteristics and trajectories. One approach could

be to group people based on the neighborhood (or

census zone) in which they live and to use such

groupings to identify a sphere of activity for the resi-

dents of a particular area. Miller (2007) and

Wellman, Boase, and Chen (2002), however, argued

Figure 1. An example prototype activity space: “Dog bone.”

Note: H¼home location; W¼work location).
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that the nature of place is changing; new technolo-

gies and the subsequent intermingling of real and

virtual spaces have altered the meaning of residential

location such that people living near each other can

have very different daily experiences. By this argu-

ment, residential location is of declining importance.

Forrest and Kearns (2001) noted, “it would seem

that as a source of social identity the neighborhood

is being progressively eroded with the emergence of

a more fluid, individualized way of life. Social net-

works are city-wide, national, international and

increasingly virtual” (2129). Such effects have been

exacerbated because of the COVID-19 pandemic,

although with heterogeneity between those who

have worked or could work from home (Bick,

Blandin, and Mertens 2021; Trasberg and Cheshire

2021). Miller (2007) argued that the declining influ-

ence of place on human experience due to space

adjusting technologies will increasingly lead to the

potential for a place-based fallacy. The place-based

fallacy occurs when one incorrectly infers the attrib-

utes, activities, or experiences of people based on

the places they live. Although it is possible to group

space–time paths based on residential location, the

place-based fallacy suggests that this could lead to

spurious conclusions about activity spaces because it

would mix heterogenous groups.
Another type of approach might be to focus on

characteristics of the movement itself via the techni-

ques emerging from computational movement analy-

sis. For example, McArdle et al. (2014), Laube,

Imfeld, and Weibel (2005), and Dodge, Weibel, and

Lautensch€utz (2008) developed ways to create taxon-

omies or clusters of movement patterns based on

geometric characteristics; Buchin, Dodge, and

Speckmann (2014) extended this idea by developing

ways to measure the similarity of trajectories

accounting for the context in which the movement

takes place. Similarly, Jaegal and Miller (2020)

developed wats to measure the similarity of space–time

prisms. Shoval and Isaacson (2007) used sequences

of visiting locations to identify types of trips.

Dem�sar et al. (2018) used aggregated data to show

urban circulation patterns via the density of paths

in a place-time. These approaches, however, neglect

the characteristics of the moving entities, in part

because human movement databases tend to be

attribute poor.
Demographic characteristics and movement are

intertwined. The COVID-19 pandemic clearly

highlighted this. Using mobile phone trajectory data,

Weill et al. (2020) showed how area-level socioeco-
nomic status is clearly related to movement patterns
before and during the pandemic, suggesting that
wealth creates a kind of elasticity of movement:

Wealthier areas were more able to reduce movement
during the pandemic than lower income areas. This
work is unfortunately limited by data availability.

Demographic and economic information for the
national extent is only available at the area level, so
although the individual movements of phones are

tracked, the characteristics of those people transport-
ing them are unknown. The socioeconomic trends
in Weill et al. (2020) are established by ascribing

the ecological characteristics of the area where the
phone spends the night to the person.

Social and Economic Drivers of

Generalized Activity Spaces

The concept of a generalized activity space links
movement to demographic and economic character-

istics. It is rooted in the idea that similar kinds of
people use space in similar ways. We use the concept
of lifestyle to define groups of similar individuals.
Lifestyle can be considered both an independent and

dependent variable (Kipnis 2004). Marketers typi-
cally take the latter position, viewing lifestyle as a
product of consumption. In the transportation litera-

ture, though, lifestyle is traditionally viewed as an
independent variable, a shaper of active spaces, not
a consequence of them (Hanson and Hanson 1981;

Salomon and Ben-Akiva 1983; Dieleman, Dijst, and
Burghouwt 2002; Kressner and Garrow 2012; Dong,
Allan, and Cui 2015).

Dog bones describe one lifestyle, where a person

has a single home and a single job and commutes
regularly between them; the illustration links a life-
style to an activity space. The idea of lifestyles starts

with the assumption that tastes are neither completely

determined by economic status, as was implied by

Marx, nor totally individualized. Tastes are determined

in part by relative position in the markets for wealth

and prestige, in part by individual choice informed by

education and experience, and in part by voluntarily

chosen, collectively held standards that determine

lifestyles. Lifestyle differentiation takes place both

inside and outside the markets for wealth and prestige

and hence crosscuts them. (Zablocki and Kanter

1976, 269)
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Salomon and Ben-Akiva (1982) defined lifestyle rel-

ative to an individual’s choice in three domains: (1)

formation of a household, (2) participation in the

labor force, and (3) orientation toward leisure.

Lifestyles are determined by a person’s behavior in

family, work, consumption, and leisure. Therefore,

by observing these variables it should be possible to

gain insight into a person’s lifestyle. Thus, lifestyles

exist in the middle space between microscale indi-

vidual decisions and macroscale social and economic

forces that constrain choice.
Generalized activity spaces, as a concept, are

closely linked to the concept of lifestyle, the idea

being that economic, demographic, and activity data

in combination might be used to identify general

types of activity spaces. The aspatial concept of life-

style could have a generalized spatial projection.

Lifestyle and location are not independent, however,

and, to varying degrees, might be endogenous. This

raises questions about how to best approach the gen-

eralization of activity spaces. Area-based units of anal-

ysis could be problematic because of the place-based

fallacy identified by Miller (2007). On the other

hand, geographic units of analysis might describe

shared social, cultural, and political experiences that

translate into shared drivers of behavior. One alterna-

tive to area-based units of analysis is to focus exclu-

sively on lifestyle as an alternative to place. Grouping

people with similar lifestyles might provide a basis for

the generalization of activity spaces. Lifestyle is con-

strained by location, though, so ignoring location

completely seems suboptimal. An analytical point of

entry is necessary to create generalized activity spaces,

such as the dog bone, but does lifestyle or location

provide a better basis for aggregation?

Data

There are few data sources that integrate rich indi-

vidual-level demographics and human movement.

GPS traces of mobile phone users are locationally rich

but demographically poor: They provide high spatial

and temporal resolution data about location but

almost always lack meaningful demographic and eco-

nomic data about the user. The only data set that we

were able to obtain that contained rich descriptions of

spatial behavior coupled with demographic and eco-

nomic data about respondents was a 2001 travel sur-

vey in Atlanta, Georgia, which consisted of three

survey instruments. Although these are dated, the

purpose of this analysis is to explore the viability of a

concept, rather than provide an empirical understand-

ing of these specific sets of collective behaviors. As

such, for this example, we are not interested in the

urban geography of Atlanta per se; rather, this offers a

conveniently workable data set with limited access

constraint. The sample is large and balanced by socio-

economic status and county of residence (the Atlanta

Metro has thirteen counties), and it includes 7,552

heads of household. Household heads completed a

travel diary describing their travel patterns (origin,

destination, time, purpose, and mode of travel). All

trip origins and destinations were geocoded. The data-

base includes 34,582 trips. Each household’s trips were

recorded by phone interview and were reported over a

two-day period. The data are suited to the problem at

hand because they include both detailed individual-

level demographic characteristics and detailed records

of spatial behavior. The data were downloaded from

the University of Minnesota Travel Survey

Data Archive.

Methods

To assess the viability of generalized representa-

tion of activity we ask the following questions: Do

people who live in similar locations have similar

activity traces? Independent of location, do similari-

ties in lifestyle translate into similarities in the use

of space? As such, a key contribution of this article

is to look for evidence of group-specific patterns

across two-dimensional projections of activity traces.

These methods are exploratory, aimed at suggesting

further directions for the identification of generalized

activity spaces. Three different ways of grouping

paths are explored: First, location-based aggregations

of space–time paths are created, then nonspatial

aggregates based on the notion of lifestyles are con-

structed, and finally we explore the joint combina-

tion of location and lifestyle. This article does not

explicitly consider the temporal component of

space–time path, but this might be an important dif-

ferentiator of generalized activity spaces in future

extensions to this work.

Activity Space Standardization

The principal challenge to the identification of

generalizable patterns of paths across space and time

is that these detailed geolocation data tend to
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encode a great deal of information about the config-

uration of the built environment that might obscure

generalizable trends. Space–time paths are very sen-

sitive to local constraints such that two semantically

identical paths in different places would appear dif-

ferent because they are shaped by one’s position in

the urban field. For example, a delivery driver who

works in the central business district and lives in a

middle-class suburb on the northern edge of the city

would have a different activity space than a delivery

driver who lives on the western edge of the city by

virtue of both configurational differences in the built

environment in different parts of the city and the

simple fact that one has a south–north commute and

the other has an east–west commute. These two

delivery drivers, although they have different activity

spaces because they live in different places, are oth-

erwise very similar. At one level of abstraction the

delivery drivers lead very different spatial lives, yet

at another they are quite similar.
To directly compare the activity spaces of the two

delivery drivers, the paths must be expressed in a

standardized form that abstracts them from their

locational constraints. A common way in which a

variable can be standardized is by expressing it in

terms of deviations from the mean; a corollary is

that activity spaces can be standardized by expressing

them as deviations from a common reference point.

Thus, as the standardization of numbers makes them

unitless, the standardization of activity spaces makes

them “placeless.” Calkins and Marble (1980) devel-

oped polar transformations for geographic data and

Saxena and Mokhtarian (1997) first used this tech-

nique to standardize travel patterns using a home–-

work axis. Kwan (1999, 2000) also used this

technique to produce geographic information system

(GIS) style overlays of spatiotemporal activity pat-

terns. Standardization to the home–work axis poten-

tially allows one to statistically compare activity

spaces, but it only works for people who are

employed in a single job. For those who do not work

or who have multiple jobs, standardization of paths

to a home–work axis is problematic. One of the per-

sistent challenges to the idea of generalized activity

spaces is therefore the difficulty of standardizing

space–time paths.
We standardize activity spaces using a polar coor-

dinate system that was constructed for each of the

7,552 households in the analysis. Polar coordinate

systems look like a dartboard and the bullseye is the

origin of the projection. Degrees are measured as

departures from some arbitrary azimuth, convention-

ally due east or due north. If the azimuth is due east,

zero degrees is due east, 90 degrees is south, and so

on. Distance from the origin, when combined with

the angular departure from the azimuth, provides a

unique location on a polar coordinate system. On

planar coordinate systems locations are described by

an x, y pair where the x and y coordinates represent

distance from some arbitrary reference line, and

polar coordinates are given by their angle of dis-

placement from an arbitrary reference and distance

from the origin (q and h, respectively). We defined

the origin of each person’s coordinate system as their

residential address, and the reference axis (i.e., 0

degrees) as a line drawn between the address and

the Atlanta City Hall (Figure 2). Although Atlanta

is a large polycentric area, employment density

Downtown is almost twice (55.21 people/acre) that

of the next nearest center (Emory 29.39 people/

acre), and the residential–workplace flows that one

might expect because of such geography are borne

out in our sample. For each person, trips were pro-

jected onto their unique, personal polar coordinate

system. Figure 2 graphically illustrates the outcome

of the projection procedure. There are people living

within two houses, i and j, the city hall (indicated

by the building with a flag on top), and a supermar-

ket (indicated by the shopping cart). For each per-

son, a unique polar coordinate system is defined

from their household location. The supermarket can

be described by a single coordinate vector in a

Euclidean coordinate system. After the projection,

the coordinates of the supermarket are defined rela-

tive to each house’s unique coordinate system.

Projecting paths to an individual-specific polar coor-

dinate system allows the generalization and standard-

ization of paths.
We fully recognize that our method of standardi-

zation is imperfect. Atlanta is a polycentric city,

making a choice of a reference direction somewhat

problematic. In spite of this shortcoming, we believe

it to be effective for expository purposes, and we

empirically test the standardization in later sections.

We hope that others will innovate and develop new

ways of standardizing activity. One interesting

potential approach to standardization lies in the

work of Pappalardo et al. (2015), who used semantic

information about activity, the kinds of places peo-

ple go, as captured in a travel diary, to generatively
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simulate travel patterns. The idea is that generalized

activity sequences might have some potential basis

for synthetically creating generalized activity spaces.

Identifying Lifestyles

Lifestyle segmentation systems divide populations

into discrete groups based on similarities in behav-

ioral or demographic characteristics. Segmentation is

widely used in the commercial sector because of its
ability to profile consumption patterns (Webber and

Burrows 2018). These systems are also useful for pro-

filing general travel behavior (Hincks et al. 2018;

Martin et al. 2018; Birkin 2019). Constructing life-

style groups is a technical exercise and there are a
variety of different options available to analysts,

including cluster analysis via K-means or other clus-

tering algorithms (Singleton and Spielman 2014),

data reduction techniques such as self-organizing
maps (SOM; Spielman and Thill 2008; Y. Liu,

Singleton, and Arribas-Bel 2019), or latent class

analysis, which is commonly prescribed to individ-

ual-level data (Swait 1994). A latent class represents
a variable that is not directly observable (in this

case, “lifestyle”), with the probability that people

belong to a group given their observed characteris-

tics. In this instance, latent class analysis has some

important advantages over k-means type cluster anal-
ysis. First, it accepts a variety of input measurement

types; although initially the technique was conceived

for categorical data, in its modern implementation it

allows for input of mixed data including nominal,
ordinal, count, and continuous data. Because classifi-

cations are model-based one can evaluate how well a

given classification scheme fits the data using likeli-

hood ratio chi-square statistics and other information
criteria such as the Bayesian information criterion

(BIC) or Akaike information criterion (AIC).

Directional Statistics

Directional statistics are used to analyze angular

observations and are particularly useful when work-
ing with polar coordinate systems. The angular com-

ponent of a set of points in a polar coordinate

system can be described in terms of their directional

mean and degree of dispersion, dispersion measures
how evenly distributed observations are around the

Figure 2. A simplified example of polar reprojection. Note: CBD¼ central business district.

A Generalized Model of Activity Space 2219



mean (Mardia 1972; Rohde and Corcoran 2015).

With directional data conventional statistical proce-

dures are not appropriate, for example, taking the

arithmetic mean of trajectories in the 1- and 359-

degree direction would be incorrect. There are a

limited number of hypothesis tests for directional

distributions, these examine: (1) the uniformity of a

distribution (Rayleigh test), which measures the

extent to which the vectors are distributed evenly in

all directions around the circle; (2) the equality of a

set of directional distributions (circular analysis of

variance); and (3) the equality of a pair of distribu-

tions (Watson two-sample test; Lund and Agostinelli

2007). We employ these tests to compare standard-

ized trajectories for geographic and lifestyle-based

groups of people.

Research Design

We argue that the standardization of space–time

paths makes it possible to compare travel patterns

without regard for the effects of location. We

explore this empirically in a series of hypothesis tests

implemented using directional (or circular) statistics.

These tests allow us to determine if lifestyle or loca-

tion-based groups have statistically significant differ-

ences in directional means or degrees of dispersions.

Activity spaces with different directional means and

amounts of dispersion, if standardized and superim-

posed, will show a different use of space. Directional

statistics are a simple, parsimonious mechanism for

finding differences in complex spatial patterns. The

use of direction statistics is also limiting, however. It

allows the identification of group-level differences

but it does not permit identification of shapes, or

areas, that might constitute a generalized activ-

ity space.
We evaluate a series of simple null hypotheses to

test the efficacy of the standardization and identify

both lifestyle and place-based geographic regularities

in activity spaces. The null hypotheses are:

1. The mean direction of travel is equal in all

residential locations.

2. The amount of variability in trip direction (trip

dispersion) is equal in all residential locations.

3. The mean direction of travel is equal for all

lifestyle groups.

4. The amount of variability in trip direction is equal in

all lifestyle groups.

5. The mean direction of travel is the same for all groups

defined by the interaction of lifestyle and location.

6. The amount of variability in trip direction is the same

for all groups defined by the interaction of lifestyle

and location.

7. The mean distance traveled is the same for all

lifestyle groups.

8. The mean distance traveled is the same for

all locations.

Hypothesis tests 1, 2, and 5 examine the efficacy of

the standardization, and if effective, these null

hypotheses will be rejected with the direction and

dispersion of space–time paths not being geographi-

cally differentiated. Hypotheses 3, 4, and 6 examine
the impact of lifestyle on space–time paths, and

these hypotheses will be rejected if lifestyle is not

associated with the direction or variability in travel

patterns. Hypotheses 4 and 5 examine the interac-

tion of lifestyle and location, and instead of defining

groups geographically or based on their lifestyle, for

these tests’ groups, cases are defined through the

cross-product of lifestyle and location. A person with
lifestyle A in location B is in a different group from

a person with lifestyle A in location C. Hypotheses

7 and 8 examine the distance traveled.

Results

Lifestyle Analysis

The data include a total of 7,552 people collec-
tively making 34,582 trips during the survey period.

The analysis was restricted only to adults (over the

age of eighteen) who were the primary survey

respondents. Individuals with missing data were

omitted from the classification. We used all available

demographic and economic variables. The groups are

primarily differentiated by employment, household
size, and home ownership (see Table 1 and

Figure 3).

The latent class analysis was implemented, and a
four-class model (Table 2) selected that optimized

AIC and BIC, and accounted for 76 percent of the

variance in the data set, meaning that the negative

log likelihood from a one-class model decreased 76

percent with the addition of three classes to the

model. The results are shown in Figure 3 where

the x axis shows each of the variables included in

the analysis standardized to 0 to 1 range, with the
lines representing the mean value of each variable

for each class.
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Two groups (Classes 1 and 3) consist of people

who work full time, forty hours per week, a large

proportion of whom call themselves professional or

managerial workers. Two groups (Classes 2 and 4)

include people who either work part time or do not

work (i.e., are unemployed, disabled, retired).

Almost half of the people (44 percent) are in groups

with a high proportion of full-time workers, who

self-identified as professionals or managers, owned

their own home, lived in multiperson households,

and owned multiple cars. The second group of full-

time workers (Class 3) represented 19 percent of the

people. By contrast they lived in small households,

had a much higher tendency to rent their home,

were younger, owned fewer cars per household, and

although largely White had higher probability of

being African American, Hispanic, or Asian than

members of the first group. The two groups where

part-time workers or unemployed were dominant

represented 35 percent of the data set and on

Figure 3. Lifestyle class profiles.

Table 1. Latent class analysis input variables

Variable Description

Age Ordinal variable with five age ranges

Home ownership Indicator variable for home ownership

Vehicle ownership Number of vehicles per household

Ethnicity Ethnicity (White, Black, Hispanic, Asian/other)

Employment Indicator variable for full-time employment (35 hours/week at one job)

Professional Indicator variable for those who identify as “professionals” or “managers”
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average were older than members of the group con-

taining full-time workers. The first group (Class 2),

representing 22 percent of the people, lived in large

households, tended to own their home, owned multi-

ple cars, and had a very high probability of being

White. The second group (Class 4), representing

13 percent of the data, was the most racially diverse

group, and had the highest probability of renting

their home. They also owned the lowest number of

vehicles per household.
Figure 4 shows the aggregation of all activity

traces for members of each lifestyle group. Paths are

displayed using the polar coordinates from each per-

son’s coordinate system. The origin of the projection

is each person’s home, and the zero degrees is at the

top of each panel.

If members of a particular lifestyle group are geo-

graphically clustered, the effect of location and life-

style on spatial behavior might be confounded. That

is, it becomes impossible to separate lifestyle and

location effects. The difference of Ripley’s K-func-

tions comparing each of the lifestyle groups to the

entire sample indicate that two of the lifestyle

groups are significantly geographically clustered

when compared to the geographic distribution of the

entire sample. Statistical evaluation of the difference

between two K-functions is difficult (see Diggle and

Chetwynd 1991 for a discussion), a difference near

zero is seen as evidence that the two K-functions

describe similar patterns, a positive value can be

interpreted as evidence of clustering. At all scales,

Classes 3 and 4 (professional singles and older part-

timers) appear to be geographically clustered. To

reduce the impact of geographic clustering, locations

were described using quadrants. The city was divided

using north–south and east–west axes with City Hall

at the center. Each person was associated with one

of four quadrants; location thus became a categorical

variable in the analysis. The objective was to

minimize the effect that particular locations are

strongly correlated with particular lifestyles.

Moreover, the number and size of zones was con-

strained by sample size; the cross-tabulation of geo-

graphic and lifestyle groups would dilute the sample

if too many geographic groups were used. The data

we have available are imperfect, but we believe they

are sufficiently robust for our purposes.

Distance and Directional Patterns

Generally, the number of trips in each lifestyle

group was proportional to the number of individuals

in the group. Figure 5 shows directional kernel den-

sity plots of trip direction for each lifestyle group.

The number of trips in each direction determines the

height of the kernel. When looking at the directional

patterns interesting trends emerge, particularly when

the groups representing full-time workers are com-

pared to groups representing unemployed or part-time

workers. In the groups representing full-time workers,

there are many trips in the 180-degree range. These

appear as bumps in the kernel density plots of trip fre-

quency by direction for each group. This bump occurs

because people tend to run errands on their way

home. The morning commute (in the zero-degree

direction) represents a single trip, but the trip home,

if it includes multiple stops, appears as multiple trips,

yielding a spike in the distribution.
The profiles in Figure 5 represent only the direc-

tional component of trips; short trips and long trips

are not differentiated. If lifestyle groups have differ-

ent directional profiles it seems, as a matter of

course, that they will have different activity spaces.

Without regard for distance, if groups tend to travel

in different directions within the standardized space,

they are using the space around their home in a dif-

ferent way. It is possible, however, that many short

distance trips, with varied directions, could yield a

Table 2. Lifestyle groups

Class Description

Class 1: Professional families Young professional families who own their home and multiple

cars; predominantly White

Class 2: Part-time, nonprofessional families Older families; own multiple cars; nonprofessional, do not work

full time

Class 3: Professional singles Young professional singles who are equally likely to own or rent

their home; usually own one car; Predominantly White

Class 4: Older non-full-time workers Older racially diverse renters who are unemployed, retired, or

work part time; lowest vehicle ownership
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generalized activity space like one with fewer long

trips even though it would have a different direction

distribution.
The analysis found that lifestyle, location, and the

interaction of lifestyle and location were not signifi-

cant predictors of the mean travel direction for the

standardized data (Table 3). Location was not associ-

ated with the variability of directional patterns, but

lifestyle was associated with variability. This finding

also held for an interaction of lifestyle and location;

that is, people of the same lifestyle in different loca-

tions had different amounts of variance in the direc-

tions they traveled. This provides some support for

the efficacy of the standardization; it shows that the

standardization washes out the directional effects of

location. Lifestyle, regardless of where a person lives,

is associated with the directional variability of travel

(but not the actual direction).

Figure 4. Spatiotemporal activity traces aggregated by lifestyle.
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To further explore the differences and similarities

among groups, a series of pairwise comparisons were

conducted. A Watson two-sample test of homogene-

ity was used to test the null hypothesis that a pair of

lifestyle groups have the same directional travel pat-

terns. The same null hypothesis was examined for

four randomly generated groups. For all pairwise com-

parisons of lifestyle groups there were significant dif-

ferences in directional distributions (Table 4). These

results agree with previous studies and find statisti-

cally significant differences in travel between analyti-

cally derived population groups (Pas 1982; Salomon

and Ben-Akiva 1982; Goulias et al. 2007) and are

also supported by the tests in Table 3. For randomly

generated groups there was no difference in direc-

tional distribution (Table 4); this test was done to

verify the utility of the method. We recognize the

potential multiple testing problems here but are

unaware of an alternative for directional distributions.
Hypotheses 7 and 8 examine the distance traveled

and were tested using a standard analysis of variance

and Tukey’s honestly significant difference (HSD)

test. For all pairs of lifestyles and quadrants, the dif-

ference in mean trip length is significant (p < .0001,

Figure 5. Lifestyle group directional profiles.

Table 3. Summary of hypothesis tests

Location Lifestyle Location�Lifestyle

Mean direction Hypothesis 1: Not

significant (p¼ 0.1185)

Hypothesis 3: Not

significant (p¼ 0.6576)

Hypothesis 5: Not

significant (p¼ 0.4311)

Dispersion Hypothesis 2: Not

significant (p¼ 0.6167)

Hypothesis 4:

Significant (p¼ 0.00599)

Hypothesis 6:

Significant (p¼ 0.00544)

Table 4. Distributional hypothesis tests

Null hypothesis Test Result Significance

The lifestyles have the same

directional pattern

Watson two-sample test Reject (for all pairwise

comparisons)

p< 0.001

Randomly selected subsets of

the data have the same

directional pattern

Watson two-sample test Accept (for all pairwise

comparisons)

p> .10

Travel isotropic (entire sample) Rayleigh test for uniformity Reject p< 0.001

Travel isotropic (latent classes) Rayleigh test for uniformity Reject (for all groups) p< 0.001
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except for the comparison between grayer part-timers

and part-time families, which had p¼ 0.003).
Finally, the null hypothesis that travel has a uni-

form directional distribution was examined; that is,

do travel patterns tend to be isotropic relative to a

person’s home? This is particularly pertinent given

that lags in spatial analysis often assume isotropy.

These results challenge this assertion, however. The

Rayleigh test of uniformity rejected the null hypoth-

esis that travel is isotropic both for the entire sample

and for each lifestyle group (Table 4; Figures 4

and 5).

Discussion

This article examines the feasibility of identifying

generalized activity spaces to link individual and

area-based definitions of sociospatial context and to

provide a framework for incorporating socioeconomic

data into large-scale studies of human movement.

Lifestyle, residential location, and the combination

of lifestyle and location are examined as a basis for

defining generalized activity spaces. The goal was to

test the tenability of the concept of generalized

activity spaces and to identify avenues for further

development of the concept.
Our analysis finds that lifestyle seems to be associ-

ated with the amount of variability in the direction

that a person travels but not the actual direction:

People with similar lifestyles exhibit similar variance

in travel direction. This is not true of geography, as

location is not associated with the variability or the

mean direction of travel, and this finding supports

Miller’s (2007) place-based fallacy. People with simi-

lar lifestyles but residing in different locations seem

to have different amounts of variability in travel.

The separation of lifestyle and location was not as

neat as one would have liked, as some lifestyles are

geographically clustered. The similarities and differ-

ences identified are based on an analysis at a rather

coarse granularity, but this level of abstraction was

necessary to prevent the confounding of lifestyle and

location, as using finer units of analysis would have

caused particular locations to be dominated by par-

ticular lifestyles. Furthermore, Stopher et al. (2007)

noted that twelve days of tracking information might

be necessary to gain a full understanding of an indi-

vidual’s activity patterns, as beyond twelve days the

patterns tend to get repetitive. This analysis used a

large sample of short-duration activity paths, but a

more robust and freely available data set with longer

duration travel and deeper demographic richness

would not only advance interrogation of the concept

of generalized activity spaces, but would substantially

advance the field.
Standardized space–time paths are not isotropic

(as indicated by the Rayleigh tests in Table 4), a

finding confirmed by Gonzalez et al. (2008). This

has some implications for the spatial social sciences.

First, anisotropy in spatial behavior raises questions

about the use of radial buffers or simple contiguity-

based weights matrices in spatial analysis of behav-

ior. Radial buffers, commonly constructed “as the

crow flies” or using the street network, are not sup-

ported by this analysis. Even when location is stan-

dardized, travel patterns are not uniformly

distributed in all directions. Second, this raises some

interesting questions about how to best characterize

the shape of human activity spaces. For example,

Sebastian, Klein, and Kimia (2002) developed a

shape similarity metric that can be used to query

databases of shapes to identify objects with a similar

morphology. An interesting area of future work

might be incorporating such metrics into movement

databases or identifying the extent to which similar-

ity in the morphology of movement patterns relates

to individual characteristics and residential location.

One might hypothesize that within location-demo-

graphic groups, shapes are more similar than across

groups; that is, living in the same census tract and

having similar demographic characteristics leads to

similarly shaped activity spaces. Our preliminary

work here suggests that both who you are and where

you live may interact to shape the morphology of

activity spaces. Doi, Mizuno, and Fujiwara (2020)

take an interesting approach by inverting the prob-

lem, trying to estimate individual characteristics

from semantically enriched GPS traces. By using

GPS traces to understand the nature of the places

that people stopped, they estimated gender and age

with mixed success.

Generative approaches seem an extremely promis-

ing alternative to focusing on the geometric charac-

teristics of observed movement. Pappalardo and

Simini (2017) developed ways to generate synthetic

activity patterns based on travel diaries. Extending

this idea, if one created a lifestyle-specific sequence

of activities, one could synthetically generate a

potential activity space for a specific type of person

in a specific location. This would sidestep the need
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to empirically estimate the shape of a generalized

activity space by allowing a researcher to generate

one (or many) based on the characteristics of

a person.

With a robust data set describing human activity,

that covered many types of places, one might be

able to determine if there are generalizable shapes—

informed by demographics and locational character-

istics. Successfully identifying generalized activity

spaces would allow more detailed understanding of

social and environmental exposures without requir-

ing invasive GPS-based tracking of people. The

COVID-19 pandemic highlights the need to under-

stand how spatial behavior is conditioned by socio-

economic characteristics. Although studies such as

Weill et al. (2020) made it clear that area-level

characteristics are associated with spatial behavior,

generalized activity spaces add precision to this idea

by providing a generic framework for understanding

how location and lifestyle shape potential behavior.

If developed to fruition, generalized activity spaces

would allow one to proactively estimate exposure

risk for types of people in types of places without a

reliance on ex post facto analysis.

Conclusions

Taken together, these hypothesis tests suggest

potential for the concept of a generalized activity

space. There is more work to be done to develop the

concept and a need for better understanding of how

lifestyle conditions the relationship between the

environment and behavior. Here preliminary evi-

dence in support of the idea that different types of

people have different prototypical activity patterns is

presented. We argue that generalized representations

of activity spaces overcome the spatial and loca-

tional fetishism inherent in time geography and the

neglect of individual spatial behavior in most

research on neighborhood effects. We find that peo-

ple who live near each other do not have similar

space–time paths but nearby people with similar life-

styles do. Statistically significant differences were

found for sixteen discrete lifestyle–location catego-

ries, suggesting that activity spaces are simulta-

neously conditioned by both who you are and where

you live.

We present the concept of a generalized activity

space while recognizing significant room for theoreti-

cal and empirical improvements. In the future, we

hope that the fusion of individual characteristics (or

lifestyles) and movement patterns can be more ele-

gantly executed if and when better data become

available. The tractability of the concept of general-

ized activity spaces was explored, and it seems to

have promise as way to bridge multiple perspectives

and reconcile tensions in the literature.
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