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Abstract
On March 23, 2020, a national lockdown was imposed in the UK to limit interper-
sonal contact and the spread of COVID-19. Human mobility patterns were drastically 
adjusted as individuals complied with stay-at-home orders, changed their working 
patterns, and moved increasingly in the proximity of their home. Such behavioural 
changes brought about many spillover impacts, among which the sharp and immedi-
ate reduction in the concentration of nitrogen-based pollutants throughout the country. 
This work explores the extent to which urban Nitrogen Dioxide (NO2) concentration 
responds to changes in human behaviour, in particular human mobility patterns and 
commuting. We model the dynamic and responsive change in NO2 concentration in 
the period directly following national lockdown and respective opening orders. Using 
the national urban air quality monitoring network we generate a synthetic NO2 con-
centration series built from a time series of historic data to compare expected mod-
elled trends to the actual observed patterns in 2020. A series of pre- and post-estima-
tors are modelled to understand the scale of concentration responsiveness to human 
activity and varying ability of areas across the UK to comply with the lockdown clos-
ing and response to openings. Specifically, these are linked to workday commuting 
times and observed patterns of human mobility change obtained from Google mobility 
reports. We find a strong and robust co-movement of air pollution concentration and 
work-related mobility – concentrations of NO2 during typical weekday commuting 
hours saw a higher relative drop, moving in tandem with patterns of human mobility 
around workplaces over the course of lockdowns and openings. While NO2 concentra-
tions remained relatively low around the time of reopening, particularly during com-
muting hours, there is a relatively fast responsiveness rate to concentrations increasing 
quickly in line with human activity. With one of the key Government advice for work-
ers to take staggered transportation into work and lessen the burden of rush hours and 
adopting more flexible work-home arrangements, our results would suggest that reduc-
tions in NO2 in urban areas are particularly responsive to broader human patterns and 
dynamics over time as we transitioned towards new working routines.
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Introduction

Air quality and pollution, especially in the urban context, are closely linked to 
human activity and movement. Whether from transportation, energy consumption or 
industrial processes, the spatial distribution of air pollutants is intimately related to 
the spatial distribution and temporal signature of individual and economic activity. 
This is particularly true for nitrogen-based pollutants which are linked to combus-
tion and transportation in urban areas and especially responsive to changes in the 
level of human activities (AQEG 2004; DEFRA 2020).

Over the course of the COVID-19 pandemic to assist in stopping the virus spread, 
most government bodies imposed lockdown and shelter-in-place policies. In the 
UK the first such national policy was introduced on March 23, 2020, and led to an 
unprecedented shift in how day-to-day human activity is carried out.1 With citizens 
across the country, and the globe, urged to stay at home, regular workday mobil-
ity patterns were replaced with reduced, staggered movement and social distancing. 
This led to an almost immediate shift to increasingly local movement around resi-
dences and less around workplaces, patterns still lingering as varying portions of the 
economy continue to work from home.

Reduction trends in pollution have been seen across the world in tandem as emis-
sions concentrations react to fast changing and varying degrees of national and 
regional lockdowns and enforcement. While varying degrees of national, regional 
and local lockdowns and openings have occurred in different contexts across the 
world, preliminary estimates point to global reductions across all pollution catego-
ries. Estimates of population-weighted global ground-level NO2 reductions are on 
average 60% with a 31% decrease in particulate matter (Venter et  al., 2020), and 
peak reductions in CO2 emissions of 26% (Le Quéré et al., 2020).

Across different regions and cities however, this reduction in pollution can vary in 
scale and intensity with estimates of around 30% average drop in NO2 in areas of Wuhan, 
the USA and Europe (Muhammad et al., 2020; Berman & Ebisu, 2020; Liu et al., 2020), 
while reductions in Delhi have been estimated to exceed 50% to 60%, primarily linked to 
traffic (Mahato et al., 2020) and up to 78% in Mumbai (Kumari and Toshniwal, 2020). 
Across cities in China, large-scale lockdowns have led to reductions of NO2 emissions in 
the range of 24.67% compared to the relative decrease of human mobility which dropped 
by 69.58% (Bao & Zhang, 2020). In the US a similar average decline in NO2 of 25.5% is 
observed in counties implementing early lock-downs (Berman & Ebisu, 2020).

In the UK, mean reduction in NO2 emissions of around 30–50% were observed 
during the lock-down, particularly at roadsides (AQEG 2020; Ropkins and Tate, 
2021). Along with the widely reported decrease in NO2, CO2 and particulate matter, 
it is important to note the highly complex nature of different pollutants with find-
ings of increased O3 levels during the lock-down (AQEG 2020; Higham et al., 2020; 
Collivignarelli et al., 2020; Sicard et al., 2020), and SO2 in the UK (Higham et al., 
2020).

1  Prime Minister’s statement on COVID-19: 23 March 2020:
  https://​www.​gov.​uk/​gover​nment/​speec​hes/​pm-​addre​ss-​to-​the-​nation-​on-​coron​avirus-​23-​march-​2020
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This research leverages the high resolution of air pollution data to explore NO2 
concentration responsiveness in the face of national lockdown and openings, com-
pared to what would have been the status quo. We implement a difference-in-differ-
ence approach to simulate a quasi-experimental design to study observed concentra-
tion impacts against a controlled sample (Chen et al., 2020). We estimate a synthetic 
control data series conditional on temporal dynamics and meteorological conditions, 
subsequently used to build a longitudinal panel database and explore the sequen-
tial average daily area reduction in pollution in the immediate and five week adjust-
ment period following respective lockdown and opening interventions. Specifically, 
we estimate daily station level synthetic NO2 under a series of autoregressive inte-
grated moving average (ARIMA) predictions on five years of respective pollution 
and meteorological trends. The high dimension of our data and estimation proce-
dure allows us to consider and trace out extremely detailed immediate and short-run 
announcement effects linked to particular changes in mobility patterns.

While our results confirm trends seen in other studies (AQEG 2020; Ropkins and 
Tate, 2021), we contribute to the existing body of knowledge by further investigat-
ing how the varying ability to comply with mobility restrictions imposed by the 
government across the UK resulted in different reductions in NO2. To do this we 
combined air pollution with mobility data provided by Google, which categorised 
people’s spatial behaviour change over the course of the pandemic in terms of visits 
to different place types (i.e. workplace, home, grocery shops). For example shifts 
towards home-based) work patterns are one margin through which pollution dynam-
ics may be influenced, with time saving and a potential reduction in traffic conges-
tion among the main points stressed by the early advocates of remote working (Kita-
mura et al., 1991; Olson, 1983).

However, works in transportation studies have shown conflicting results. 
Although reductions in the number and length of commuting trips is reported in 
some of the earliest studies (Kitamura et al., 1991), more recent research shows that 
the link between home-based work and travel reduction is not so apparent (de Abreu 
e Silva and Melo 2018; Budnitz et al. 2020) and time saving seems not to be a major 
pull factor (Bailey & Kurland, 2002).

This work contributes to understanding the extent to which changes to human 
activities, and in particular new everyday work patterns, have impacted combustion 
pollution concentration levels in the immediate and short run. This is an important 
first step in better understanding how different areas, with vastly different propensi-
ties to work from home and ability to comply with stay-at-home orders, have been 
differently impacted by these responsive changes to pollution dynamics and therefore 
resulting in people experiencing unequal exposure to air pollution where they live.

Data and Study Region

High temporal frequency pollution monitoring and meteorological data are obtained 
from the UK Government Department for Environment, Food and Rural Affairs 
(DEFRA). Various monitoring networks exist, each targeting different types of 
pollutants in different areas. We focus on capturing the high-frequency transition 
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of daily patterns as they adjust under new lockdown and easing periods  in urban 
areas, and the role that this transition has on pollution concentrations. Therefore, we 
use the Automatic Urban and Rural Network (AURN)2 measuring hourly levels of 
Nitrogen Dioxide (NO2) concentrations measured in µg/m3, distinguishing between 
two sets of stations: Urban Background capturing more ambient levels and Urban 
Traffic targeted at roadside concentration monitoring.

AURN network monitoring stations are categorised according to the primary 
type (or source) of urban pollution located in continuously built-up areas. Pollution 
at traffic sites is determined predominantly by emissions from nearby vehicles and 
representative of air quality in major city junctures, while background sites rep-
resent areas and pollution levels not determined particularly by any single source 
or street but rather the integrated contribution from all sources upwind. In total 
the network comprises 133 stations with 65 Background and 68 Traffic. Figure 1 
shows the distribution of station types across the UK, highlighting respective Local 
Authority administrative boundaries which serve as our boundary definitions.

With a few exceptions, there is a general one-to-one correspondence between 
Local Authority areas and the presence of a Background station, a Traffic station, 
or both. Separate analyses are conducted on the traffic-based and background-based 
pollution measures for a variety of reasons. Firstly, since the observational unit 
defaults to the Local Authority we risk over-representing a location by including 
multiple same-source monitors in a local area. In the case where a Local Authority 
has two or more of the same monitoring source, an average value is taken for that 
region’s traffic or background levels. There are only five Local Authorities (Stock-
ton-on-Tees, Sheffield, Birmingham, Aberdeen City and Glasgow City) with more 
than a unique type, and in these areas both of the same source monitoring stations 
are located in close proximity to each other.3

We further keep traffic and background pollution isolated as opposed to pooled 
given the significant difference in their levels and patterns. A t-test on the values 
traffic and background pollution measured within the same locality indicate signifi-
cantly higher average traffic levels with a mean value of 3.17 relative to the 2.74 
mean of background levels and t = −84.62 . Thus, the location observational units 
used are based on 64 unique Local Authorities with Traffic monitoring stations and 
63 unique Local Authorities with Background monitoring stations respectively, of 
which 31 have both types of stations.

Hourly pollution can be aggregated in several ways to explore varying dynamics. 
To align with pre-pandemic workday temporal signatures, we explore not only the 
daily median value of NO2 concentrations, but further distinguishing between  the 
median value of pollution occurring during peak rush-hours and working hours.4 

2  Pollution data is extracted using the openair v0.3–8 library in R for all days from January 1, 2015 to 
September 20, 2020.
3  Statistical tests and visual inspection between the respective series in the same LAD are run before 
being combined. Tests on granger causality in both directions suggest that series are significantly similar 
and co-move together with high correlations all over 0.7 between them.
4  The median value is preferred so as not to be influenced by outliers in a respective time period.
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Figure 2 shows the weekday average daily temporal signature of pollution over time 
for Local Authorities compared against the national average. These patterns high-
light peak rush-hour times and concentration levels over the 24-h cycle, and are 

Fig. 1   AURN Pollution Monitoring Network UK
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more prominent in high traffic areas. With this as our baseline temporal workday 
signature, we leverage the high frequency hourly pollution levels to explore not only 
the reduction in daily concentrations, but whether they are linked to average changes 
over particular key times of the day.

Fig. 2   Hourly Pollution Trend Aggregates
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Decomposing longer term trends, Fig.  3 plots the distribution of daily NO2 
dynamics since 2015.5 These plots show the maximum and minimum national pol-
lution level along with mean and median values. The data is sliced in different ways, 
firstly by traffic and background urban stations, and further by time signature includ-
ing the median daily value for the entire 24-h period and the median value observed 
during rush-hours (identified in Fig. 2 as 7AM – 9AM and 4PM – 6PM).

While longer term NO2 reductions are less evident in only looking at the aver-
age value over time, we see particular declines in peak maximum pollution levels in 
recent years. Traffic-based monitoring levels show some evidence of general decline 
over the past five years, most notable in commuting hour concentration levels.

Important is the seasonal patterns which can be observed over the multi-year 
series. The smoothed average and median trends highlight emission peaks occur-
ring in December and January of the year, declining into the summer. This nation-
ally aggregate seasonal decrease observed in the data during the summer months 
is especially important to consider in trying to discern specific impacts from lock-
down and opening measures versus more general and recurring temporal dynamics. 
These plots reveal the magnitude of difference between roadside and ambient con-
centration levels and dynamics around the lockdown period and comparable times 
in previous years. These longer term temporal dynamics and patterns in the data are 
important to consider when building the appropriate counterfactual data series to be 
used in our empirical application.

Fig. 3   Long Run Pollution Trends, Monthly Aggregates: Min/Max (shaded); Mean (red), Median (Blue). 
The lockdown/ easing period is marked by the red and green vertical lines; dashed vertical lines highlight 
the same period in previous years

5  When missing, daily values are iteratively filled with the rolling average of the previous seven days of 
pollution to generate a balanced time series.
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With the correspondence between the pollution monitoring network and Local 
Authorities we can further exploit any potential variation in Local Authority char-
acteristics. If areas have different underlying mechanisms and dynamics through 
which pollution is impacted, auxiliary data at this level can be used to explore these 
variations. While time-invariant characteristics of the area will drop out in the dif-
ference-in-difference estimation, we use daily Local Authority mobility changes as 
measured by the Google Community Mobility Reports.6 This measure is the rela-
tive deviation from a baseline in visits to places of interest across six different cat-
egory groups: Retail and Recreation; Grocery and Pharmacy; Parks; Transportation; 
Workplaces; and Residential (Fig. 4). The baseline is calculated as the median value 
of visits for the corresponding day of week during the 5-week period from January 3 
to February 6, 2020.

These measures of mobility are a good proxy to determine whether expected 
changes in mobility were observed (Adams, 2020). Such measures are extremely 
correlated with pollution emissions and the timing of the lockdown and respective 
openings, and we see clear patterns following the lockdown with mirroring images 
suggesting significant increases in residential mobility and drops in more non-resi-
dential areas.

Fig. 4   UK National Mobility Patterns

6  Mobility data from google is scaled to Local Authority boundaries covering all the UK. The deline-
ation and spatial merging of mobility data to Local Authority boundaries was facilitated greatly by the 
Data Science Campus: https://​github.​com/​datas​cienc​ecamp​us/​google-​mobil​ity-​repor​ts-​data
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Methods

This work decomposes estimates for the reduction in NO2 concentration levels con-
ditional on the spatio-temporal signature of change and how they align with pre-
pandemic workday patterns. While recent changes to human activities are likely to 
have a range of influences on any number of pollutants, we focus on NO2 given its 
direct relation with dynamic changes in cities such as road traffic and human mobil-
ity patterns.

On March 23, 2020, and in response to the increasing spread of COVID-19, the 
UK government implemented the first stage of a national lockdown strategy dur-
ing which time mass stay-at-home order were enforced, workplaces and retail areas 
shuttered, and residents permitted to leave their dwellings for limited exercise or 
emergency situations. During this time, while the largest portions of the national 
workforce worked from home, a small subset of industries and key occupations con-
tinued to operate at limited capacity. Key-workers, including health and social care, 
food distribution networks, limited educational institutions and child-care, govern-
ment and utility workers remained in many areas the only individuals commuting to 
and from home and work – where secure to do so.

Following this lockdown, varying degrees of national-level opening up announce-
ments were made effectively easing the regulations. These announcements were 
cumulative and referred to certain restrictions being relaxed and official opening 
of workplaces and non-essential businesses.7 The first of these easings occurred on 
May 13, 2020, when the public was encouraged to stay-alert and return to work if 
a job was not able to be done from home (e.g. those in construction, manufacturing 
and primary industries). Following this, it was announced on June 1 that limited out-
door interaction was possible between different household bubbles with non-essen-
tial shops allowed to reopen on June 15, 2020. The final major national announce-
ment regarding the reopening phase was on July 4 when restaurants, pubs and cafes 
were further allowed to open.8

Using the first lockdown and opening dates as benchmarks, we analyse the 
impact of the subsequent behavioural changes to concentration of NO2 in UK cities. 
First, we explore observed temporal shifts in the distribution of NO2 concentration 
to have an overview of potential relationships with work-related activities. While 
the data exploration provides an overview of such relationships, we then estimate 
gaps between observed 2020 pollution around these dates and synthetic estimate 
NO2 series, further accounting for temporal and meteorological trends. Finally, we 
decompose these estimates according to human mobility changes recorded from 
Google and published via Google mobility reports. This allows us to shed light more 
specifically on which human activities have influenced the dynamics and respon-
siveness of NO2 concentrations. Using these high frequency treatment–control pairs 

7  During this time in the UK, there was little variation among localities in terms of the announcements. 
While the Fall of 2020 is marked by more local and regional lockdowns and openings, those occurring 
over the summer were targeted at the nation.
8  https://​www.​insti​tutef​orgov​ernme​nt.​org.​uk/​charts/​uk-​gover​nment-​coron​avirus-​lockd​owns
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with daily variation allows us to explore the immediate and adjusting short-run 
influences in the days and weeks following the announced changes.

Synthetic Control Data

Estimating the impact of lockdown and easing measures on combustion-based pol-
lution requires a valid and robust counterfactual pollution dynamic against which to 
compare. We are interested in benchmarking the impact of the lockdown and easing 
on pollution levels under the alternative assumption of no lockdown and where NO2 
emission levels would have continued along their expected trend. Comparing cur-
rent pollution dynamics against a counterfactual not truly representative of the alter-
native risks over- or under-estimating impact magnitudes. We build our daily alter-
native pollution levels from predicting on the time series of each individual location 
using an estimated ARIMA model on respective data, and covariates, from 2015 to 
2020. The ARIMA model is a widely used linear method for time-series analysis 
(Shumway & Stoffer, 2017), frequently applied to forecast air pollution (Nieto et al., 
2018; Wang et al., 2017). The most general form of the model, which is fit individu-
ally to each local monitoring time series, is as follows:

where the daily emission level yt for a given area is modelled conditional on the time 
series of lagged historic levels yt−i , a vector of k exogenous covariates xtk including 
wind speed, direction, temperature and a dummy variable indicating weekend status, 
and a series of autocorrelated error terms �t−j.

The choice of p and q which define the strength of temporal spillovers are chosen 
in an automated process across all areas respectively. A cross validated approach 
iteratively fits a series of model specifications varying these parameters and selects p 
and q to minimise the AIC value. In the above specification yt represents the station-
ary version of the pollutant time series. The integrated component of the ARIMA 
model accounts for non-stationarity and seasonality patterns in the data, further test-
ing and parameterizing these influences.

Systematically for every location we use the time series of five years historical 
pollution and meteorological data to estimate respective models to capture tradi-
tional regional pollution dynamics up until the ongoing COVID-19 changes began. 
The models are estimated on the (log) daily median NO2 levels from 2015 until 
the first known reported case of COVID-19 in the UK on January 31, 2020, before 
which there was little mention of the virus in local media.9

It is from this parameterized model, trained in the non-COVID world, that we 
predict synthetic control pollution time series for each location. Using observed pol-
lution levels and meteorological conditions from February 1 onwards, we predict the 
expected value of emission levels. The underlying idea is that our synthetic data is 

(1)lnln
(

yt
)

=

p
∑

i=1

�ilnln
(

yt−i
)

+

r
∑

k=1

�kxtk + �t +

q
∑

j=1

�j�t−j

9  https://​www.​health.​org.​uk/​news-​and-​comme​nt/​charts-​and-​infog​raphi​cs/​covid-​19-​policy-​track​er
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representative of the overall trends and expected behaviour in pollution concentra-
tion had NO2 dynamics over the past five years propagated forward as expected.

The benefit of this automated sequential ARIMA process applied across each 
monitoring station is in generating a very high temporal resolution of pollution 
data which is representative of the expected daily pattern for February, 2020, and 
beyond. This allows us to select comparable days from which to evaluate deviations 
and adjusts for longer term seasonal or cyclical trends. When comparing a summer-
time lockdown impact on pollution, it is important these sub-year seasonal shifts are 
accounted for. Estimates comparing impacts over dis-similar time periods, or only 
using a comparison of same-time 2019 pollution data may overestimate the impact 
of lockdown and openings if we are unable to account for the pre-existing temporal 
trends and dynamics in each individual monitoring level time series.

Our interest is in evaluating the average wedge between the (treated) observed 
current pollution trends across the country and the synthetic forecasted values they 
would have taken had no lockdown restrictions been enforced. Figure 5 gives the 
average national version of this effect taking respective time series predictions from 
each monitoring station and aggregating to a national trend. This plot highlights one 
of the crucial assumptions upon which impact estimates are built, namely that the 
pre-intervention (lockdown and opening) movements in the treated (observed) and 
control (synthetic) pollution series follow similar patterns and trends.

Difference‑in‑Difference Impact Estimation

We build a longitudinal database of daily median NO2 pollution levels spanning the 
traffic monitoring in l = 64 locations and background monitoring in l = 63 locations. 
For all areas, we have both a treated and control data series identifying observed 

Fig. 5   Synthetic Pollution Estimation. Min/Max (shaded); Observed Mean (Blue); Synthetic Mean (Red)
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concentration and synthetically estimated concentration. Subsets of commuting hour 
dynamics are also extracted to explore specifically how these impacts relate to pre-
treatment workday habits and patterns.

The most general form of the fixed effects panel data model estimated is given 
as follows. This generic specification nests multiple models varying in terms of the 
lockdown or easing intervention of interest, and further considering full day and 
commuting hours impacts.

One of the key assumptions upon which this method of estimation is based is 
that of parallel trends in the two comparable data series prior to the treatment inter-
vention. From the aggregate in Fig.  5, both trends have the same dynamics prior 
to the lockdown intervention with the synthetic data then diverging to represent a 
comparable path were it not for the intervention. From the period between Janu-
ary 31, 2020, to the lockdown both the predicted series and the observed series are 
matched with relative accuracy. This persists until around March 23, 2020, where a 
clear downward shift in real-world pollution levels are observed.10

We focus on the lockdown of March 23, 2020, and one of four easings, June 1, 
2020, to compare closing and opening effects.11 The benchmark difference-in-differ-
ence model is estimated sequentially on the treatment–control pairs for increasing time 
spans surrounding the respective lockdown and easing announcement of interest. This 
allows us to estimate the impact of the lockdown at daily intervals for the immediate 
days following up to five weeks. Exploring the daily adjusting nature of pollution con-
centration demonstrates the clear responsiveness to changes in human activity.

To further tie the estimated impacts to changes in the broader temporal signature 
and behavioural shifts introduced during this time period, each model is estimated in 
turn on varying data subsets. First we compare pollution levels for full daily aggre-
gates versus commuting hour aggregates. We then condition the models by estimat-
ing in turn on subsets of Local Authorities correspondingly with above median and 
below median mobility changes after lockdowns and openings to explore how these 
areas may differ in their dynamic NO2 impacts.

Results

Decomposing Temporal Signatures of Average Emission Reductions

A series of estimates are obtained sequentially exploring the impact of the first lock-
down (March 23, 2020) and opening (June 1, 2020) on urban background and traffic 

(2)lnln
(

ylt
)

= �
0
+ �

0
Pt + �

1
Tl + �

2

(

Pt ⋅ Tl
)

+ �
3
Xlt + ult

10  Trends are plotted at the national level and built off the aggregation of individual monitoring station 
predictions. Individual parallel trend assumptions for each monitoring station available upon request.
11  Estimated impacts on all easing announcements show similar effects, the most statistically signifi-
cant occurring towards the start of the easings and decaying towards the later as cumulative openings 
increased mobility. We present results from the second of the openings where estimated results indicate 
the largest change in pollution. Results for all easings available upon request.
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NO2 dynamics. The estimated impacts control for the average difference between 
the observed and synthetic predicted pollution levels corresponding to �

1
 from Eq. 2 

(Obs-vs-Pre). The interaction component with the respective lockdown or easing 
announcement �

2
 estimates the treatment effect of such policies on current (treated) 

pollution levels (Diff-in-Diff). In looking at both parameter estimates jointly we are 
able to decompose global average emission reductions into the effects due to differ-
ences between the observed (treated) and predicted (control) levels and the lock-
down or easing specific components at daily intervals. Selected parameter estimates 
on these impacts and up to five weeks following the respective announcements are 
presented in Table 1.12

The dependent variable is the natural log of respective median pollution levels 
within the given time interval (full daily or commuting hours). Estimated impacts 
represent the marginal percent reduction in pollution concentration, and to measure 
the impact of moving from state 0 to state 1 in the treatment variables ( Pt , Tl and 
Pt ⋅ Tl ), the change is estimated as %Δy = 100 ⋅

(

e� − 1
)

.
One important consideration in the interpretation of magnitudes is the different 

timing of the lockdown and opening, and the cumulative dynamics of pollution. 
The opening period of interest, June 1, is over two months away from the lockdown 
period. While we choose non-overlapping time bands from which to explore these 
estimates, there are undoubtedly propagated effects from the lockdown which may 
be influencing the opening. Notably, the reduction estimates of �

1
 are much larger 

around the opening given that by this time all areas had already shifted to concentra-
tion levels significantly lower than what would be predicted.

Figure 6 plots the daily adjustment to these estimated impacts for ambient level 
background pollution with traffic level results in Appendix Figure 10. These plots 
show the combined �

1
+ �

2
 estimated percent change to concentrations up to five 

weeks following the respective announcement. Clear patterns emerge in considering 
the temporal signature of impacts in the days following either announcement. There 
is an adjustment period following the lockdown and easing announcements up to 
about a week following.

Overall, we observe clear global pollution reductions in comparing current 
trends with their expected predicted value. Both reductions around the date of 
the lockdown and the date of the easing reach between 40–50% in the weeks fol-
lowing, however breaking this down reveals the respective lockdown and easing 
specific components. During the lockdown period, we are able to observe some 
immediate increases in pollution in the subsequent days, falling to a reduction in 
concentration at about seven days. Following the easing however, we observe rela-
tive increases in pollution in the range of 17% (using the estimate of Model 6, week 
3: 100 ⋅

(

e0.1595 − 1
)

= 17.29).
Comparing commuting hours with daily average estimates reveals the extent to 

which overall reductions were driven by key changes to normal working day sig-
natures. Net pollution reductions following the first lockdown reaches the range of 
50% for daily background pollution and up to 60% reduction specific to commuting 
hours.

12  Full estimated results and diagnostics available upon request.
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As new workday patterns and transportation dynamics emerge, these results con-
firm the particular responsiveness of NO2 pollution to our daily activities. While 
there are overall global reductions in pollution levels compared to the expected pat-
terns, both the lockdown and easing have additional interactive impacts in their own 
rights. As would be expected the short term impact of the lockdown was a reduction 
in pollution levels while the easing yielded relative increases.13

However, with areas having a different workforce composition adherence to 
home-working as well as to  stay at home orders have varied spatially. By combining 
air pollution and Google Community Mobility Report data we estimated the impact 
on NO2 concentrations conditioned to different levels and types of mobility as such 
environmental imbalance may further propagate regional inequalities.

Mobility‑Conditioned Impacts

We use Google Mobility Reports for Local Authority daily mobility changes relative 
to pre-pandemic visits to six key categories: residential (measured as time spent at the 
location); retail and recreation amenities (non-essential); public transit amenities; work-
places; grocery and pharmacy (essential); and parks. Difference-in-difference impacts 
from Eq. 2 are estimated in turn on subsets of those areas with the highest mobility 
change and the lowest mobility change directly following the lockdown or easing.

For each of the six categories we focused on the percent change in mobility 
for the 2  weeks following the first lockdown (March 23, 2020) and the 2  weeks 

Fig. 6   Difference-in-difference daily impact estimates (background pollution)

13  Other localities show similar trends regarding a general reduction and flattening of the hourly average 
NO2 distribution – although there are differences in the overall concentration of NO2 which is independ-
ent from the COVID-19 related circumstances. All plots are available upon request.
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following the easing (June 1, 2020). From this, areas are ranked based on their 
respective mobility responsiveness to the intervention and split into above median 
and below median mobility groups. It is crucial to interpret the estimated respon-
siveness in terms of this median value to determine what above and below this value 
represent.

Following the first lockdown, we observed a 26% median increase in residential 
mobility compared to decreases in the other categories. The largest median reduc-
tions in mobility following the first lockdown occurred in changes to workplaces 
(-63%), retail (-74%) and transport (-64%). Smaller reductions were observed around 
parks (-21%), and grocery shops (-30%).

Following the easing on June 1, 2020, mobility around residence was lower (19%) 
and visits to parks increased compared to pre-lockdown levels to 26%. However, the 
median percentage change remained negative for all the other categories but with 
different magnitudes (workplaces -49%, transport -44%, retail -58%, grocery and 
pharmacy -15%).

Figure 7 shows which areas fall above and below the median level of mobility 
for each Google category. Overall, we see that the ability to comply with mobility 
restrictions during the first lockdown and the reaction to the openings varies signifi-
cantly across space. The spatial variations in areas characterised by mobility levels 
above or below the median values do not change significantly in the two time peri-
ods considered. This suggests that areas which were less able to adhere to mobility 
restrictions were also those that more quickly tended to return to relatively higher 
levels of mobility after the re-openings and viceversa.

Higher values of residential mobility are very much concentrated in and around 
Greater London indicating a wider capacity to comply with the stay at home order 
during the lockdown but also to keep shielding  after the openings. As expected, vis-
its to the workplace show the opposite spatial pattern, being below the median value 

Fig. 7   Level of human mobility in the UK by Google type of place visited categorised as above and 
below median national values 2  weeks after the First Lockdown (March 23, 2020) and the Openings 
(June 1, 2020)
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mostly where residential mobility is above, and this provides a quite clear picture of 
the prevalence of home-working in the south of England and Scotland. Along with 
less workplace visits some of these areas also see lower use of public transit. Visits 
to parks tended to be more frequent in southern parts of the UK and, particularly 
after the openings in summer time, in coastal areas. For the categories of retail and 
grocery we do not see any specific spatial patterns as areas above and below the 
median values seem to be randomly distributed throughout the country.

By classifying areas based on the median mobility change, we can then further 
decompose our estimated reductions in NO2 concentration conditioned to the vary-
ing ability to reduce the number of visits to different places.

Estimated NO2 Concentration Reductions Following the First Lockdown (March 23)

Figure 8 shows the estimated marginal difference-in-difference impact of the lock-
down effect �

2
 . In splitting areas into above and below median post-lockdown 

mobility, we observe differences in pollution reductions after about two weeks from 
locations with variation in residential, transport and workplace mobility changes. 
For areas which had above median residential mobility change, indicating more time 
spent around residences, stronger pollution reductions are observed compared to 
areas with relatively less time spent at home.

Fig. 8   Mobility-conditioned lockdown impacts (daily traffic monitoring)
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Comparatively, similar deviations are observed with mobility around public tran-
sit and workplaces. Where locations had a below median change in mobility around 
public transit, they had a stronger reduction in movement around these amenities. 
For this grouping of areas, we observe weaker pollution reductions relative to those 
areas which have less of a reduction in transit-based mobility. With residents using 
public transit less, many shifted transportation mode towards private cars with a 
potential to counteract some of the general concentration reductions post-lockdown. 
While overall changes to concentrations are negative, this gap in reduction signals 
the importance that transportation modes and changing patterns have in determining 
these dynamics.

Along similar lines, we observe the greatest reduction in concentration for loca-
tions which had higher reduction in mobility around workplaces. In a mirror to the 
increased residential mobility, post-lockdown trends see massive decreases in work-
place mobility. As residential mobility increased, and workplace mobility decreased, 
NO2  concentration changes appear intimately linked to the degree with which 
human patterns change.

While we see some divergence of impacts among traffic-based monitoring sta-
tions for amenities associated with urban cores such as public transport infrastruc-
ture and retail, there is a notably significant difference in background ambient pol-
lution reductions conditional on mobility around parks and greenspace amenities 
(Appendix Figure  11). Where areas have strong reductions in mobility changes 
around parks in the week following the lockdown (below the median -21%), there 
are stronger reductions in background pollution. This effect is not discernible with 
traffic monitoring stations. This is likely due to the location of traffic stations which 
tend to be near major city junctions and therefore, generally further from public 
parks, making such stations less sensitive to these visits.

Estimated NO2 Concentration Reductions Following Easing (June 1)

Patterns suggest that post-easing, areas which reduced their mobility around resi-
dences, and thus travelled by some means to other destinations, had some stronger 
increases in concentration in the short term. Overall, however, all areas experienced 
increases in pollution following the easing restrictions on June 1, 2020 (Fig. 9).

The most significant difference stems from considering areas which had posi-
tive changes to retail, transport and workplace visits compared to those which 
had reductions following the easing. The post-easing increase in NO2 concentra-
tions appears, in fact, primarily driven by locations which had increased mobility 
around all these key categories of urban life. During the easing period, residents 
increasingly moved back to the workplace and shopping areas and this  is linked 
with significant pollution increases for those areas more positively reacting to the 
easing (with mobility above the median) compared to those which did not imme-
diately respond to the easing through increased mobility. On the contrary, areas 
where residential and parks mobility were above average show a less substantial 
increase in concentration of Nitrogen Dioxide. 

1185



A. Calafiore et al.

1 3

Discussion and Conclusion

While we saw overall reductions in nitrogen-based concentrations following lock-
downs around the world and in the UK due to lower levels of human mobility, we 
know that parts of the population have different propensities and abilities to com-
ply with stay-at-home orders. As population segments, in different locations, begin 
returning to pre-pandemic mobility levels at different times and in stages, the impact 
of our patterns on pollution concentration is bound to be complex. Viewing the 
responsiveness of concentration to the human mobility breakdown for different pur-
poses is key for understanding the implications of transitioning forward.

Main Findings and Interpretation

By decomposing lockdown and easing pollution impacts into hourly breakdowns 
our results show a clear difference in reductions during typical commuting hours. 
Our estimates show that, following the lockdown, reductions in NO2 concentration 
during typical commuting hours were systematically larger than daily average reduc-
tions. With the reopening of businesses and part of the population returning to their 
workplaces we see pollution increasing, albeit with commuting hour dynamics hav-
ing less relative impact. 

Fig. 9   Mobility-conditioned easing impacts (daily traffic monitoring)
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Leveraging Google Mobility Reports we further decompose these impacts 
accounting for local variations in the compliance with lockdown mobility restric-
tions. We can identify clear spatial patterns specifically in relation to mobility 
around workplaces, public transit, residence and parks, with people living in Greater 
London and in some parts of the South of England and Scotland showing a rela-
tively higher propensity to stay at home. Following the lockdown these areas have 
benefitted from a larger reduction in NO2 concentration given the increased ability 
to work at home and stay around the residence. However, this is partly counterbal-
anced by lower reductions in NO2 due to less usage of public transport which might 
correspond to some people turning to driving. Given the high propensity in home-
working characterising these areas, we can hypothesise car-drivers travelling mostly 
non-commuting trips. Such results seem to confirm that teleworkers might be more 
willing to travel longer distances with private means, reducing the potential benefit 
in air quality of less commuting (Bunditz and Tranos 2020).

With the easing of the restrictions and re-opening of the economy, visits to non-
essential shops and workplaces brought about a higher increase in NO2 concentra-
tion levels. Even at this stage we see commuting as a key component in nitrogen-
based pollution with areas where higher movements around residences are more 
likely to have weaker NO2 concentration increases. In the context of a general 
increase in mobility, however, areas more apt to use public transit did not gain any 
benefit in terms of NO2 concentration levels, which, on the contrary, seems to be 
signalling more mobility overall.

Challenges and Future Works

As we rely on Google Mobility Reports, it is important to underline some of the 
challenges characterising these data. Firstly, the geographic scale at which measures 
are available represents Local Authority averages which may include both urban and 
rural areas. This limits the granularity with which any small-area variation can be 
used to fine-tune the mobility-conditioned impacts. Further, pure count and visit 
numbers are not available and thus our thresholds from which we classify large or 
weak mobility changes is based on the overall index of mobility provided and we do 
not have detailed information on mode of travel. Future work should explore other 
sources of mobility data at higher spatial and temporal resolution allowing for the 
possibility to detect travel modes (Xiao et al., 2015) to better uncover links between 
workday commuting choices and pollution. At the same time, we note that the 
robustness of the direction of impacts across a range of model specifications in our 
aggregate results highlights significant co-movements deserving of consideration in 
the interim period forward.

Lastly, Google mobility data are crowd-sourced and as such are not the result 
of random sampling of a selected population, but representative of a proportion 
of Google users who have their location history available. While it is important to 
acknowledge this limitation, the generally large level of Google users and the tem-
poral resolution of both pollution and mobility data enable us to rely on the gen-
eral trends seen in this analysis. Opportunities to validate these data may emerge by 
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combining Google Mobility national aggregate variations with changes in the aver-
age trips by purpose of travel captured by the National Travel Survey which will be 
the object of future work.

As different regions have different propensities and capacity to adhere to restric-
tions, whether through the type of workforce and industry prevalent, the demographic 
composition, or public transportation infrastructure, our average estimated impacts 
mask a variation whereby some locations may be additionally burdened by emission 
reduction inequality. Additional analysis, combining more auxiliary data, will be car-
ried out to uncover such contextual drivers of change in urban pollution concentration 
as well as evaluating how these relationships interact with other pollutants.

Policy Suggestions

Although there are a number of complex ecological and environmental interactions 
which come into play, through an exploratory analysis and modelling exercise we 
observe systematic relationships between periods of lockdown and openings, tra-
ditional workday temporal signatures, mobility patterns and NO2 concentration 
reductions. As new restrictions and openings continued through to the end of the 
COVID-19 pandemic, there are significant environmental consequences to the re-
implementation and easing of mobility restrictions. Moreover, the short term shift 
towards more home-based work, while temporary, may significantly reshape many 
industries under the parameters of their respective workforces being able to effi-
ciently conduct their jobs from home.

As financially poorer people are often employed in occupations that do not pro-
vide opportunities to work from home (Patel et al., 2020), decomposing the signa-
ture of pollutants commonly attributed to combustion emissions and understanding 
its responsiveness to human behaviour is the first step to understand how transition-
ing towards potentially new working norms could exacerbate existing inequality 
from an environmental perspective. In light of this, it is important for policy mak-
ers to target areas with a workforce composition that has lower propensity to home-
working and ensure that sustainable travel modes are available for commuting.

This could be accomplished by investment in cycling and walking infrastructure 
as well as pressure for a capillary bus network.

Overall, our study provides evidence of the potential benefit of home-working 
in reducing concentration of NO2. While more contextual variables are needed to 
assess the advantages and disadvantages of home-working more broadly, it can be 
considered as part of the policy toolkit to reduce nitrogen-based concentrations. At 
the same time, as we note that some of the areas with more home-working also had 
less usage of public transport, which in the lockdown period was linked to lower 
NO2 drops, we could hypothesise more people turning to cars and potentially having 
longer distance trips as suggested in Bunditz and Tranos (2020). As a consequence, 
to maximise the possible benefit of home-working, making sure that high quality 
services are accessible in the proximity of people’s  places of residence becomes 
critical.
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Appendix

Fig. 10   Difference-in-difference daily impact estimates (traffic pollution)

Fig. 11   Mobility-conditioned lockdown impacts (daily background monitoring)
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