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This study develops a Geographic Data Science framework that transforms the Foursquare check-in locations and
user origin-destination flows data into knowledge about the emerging forms and characteristics of cities'
neighbourhoods. We employ a longitudinal mobility dataset describing human interactions with Foursquare
venues in ten global cities: Chicago, Istanbul, Jakarta, London, Los Angeles, New York, Paris, Seoul, Singapore,
Tokyo. This social media data provides spatio-temporally referenced digital traces left by human use of urban
environments, giving us access to the intangible aspects of urban life, such as people behaviours and preferences.
Our framework capitalizes on these new data sources, bringing about a novel Geographic Data Science and
human-centered methodological approach. Combining network science — a study area with great promise for the
analysis of cities and their structure — with geospatial analysis methods, we model cities as a series of global
urban networks. Through a spatially weighted community detection algorithm, we uncover functional neigh-
bourhoods for the ten global cities. Each neighbourhood is linked to hyper-local characterisations of their built
environment for the Foursquare venues that compose them, and complemented with a range of measures de-
scribing their diversity, morphology and mobility. This information is used in a clustering exercise that uncovers
a set of four functional neighbourhood types. Our results enable the profiling and comparison of functional
neighbourhoods, based on human dynamics and their contexts, across the sample of global cities. The framework
is portable to other geographic contexts where interaction data are available to bind different localities into
functional agglomerations, and provide insight into their contextual and human dynamics.

1. Introduction

Cities are complex entities at the heart of the main human challenges in
the present century. Cities have been framed both as engines of innovation,
productivity and sustainability (Glaeser, 2011), but also as sources of con-
centrated pollution and crime (Bettencourt, Lobo, Helbing, Kuhnert, & West,
2007). Given that the majority of humanity now live within cities (DESA,
2018), it has never been more important to develop better understanding of
their main strengths and weaknesses, as well as those mechanisms under-
pinning their functional structure and dynamics.

An important concept when articulating urban structure is the notion of
the neighbourhood. Neighbourhoods can be understood as the building
blocks of cities, coherent and meaningful entities that, put together, make
up a city and can also be leveraged for policy making (PCAST, 2016). There
is a long tradition within the social sciences to frame the neighbourhood as
a social construct (Sampson, 2019) that evolves over time, both in nature
and extent (Knaap, Wolf, Rey, Kang, & Han, 2019). Equally,
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neighbourhoods also have a very physical dimension. At their core, a
neighbourhood is the geographical representation and delimitation of a
place that, while being part of a larger more diverse city, shares similar
character, composition, and/or activity patterns. The concept thus plays at
the intersection and interaction of the built and lived or experienced en-
vironment (Sennett, 2018). In this sense, it relates to that of activity space,
although it differs in some crucial aspects. While activity spaces thread to-
gether a series of locations based on whether an individual has been in
contact with them in their everyday life (Patterson & Farber, 2015),
neighbourhoods bring together the individuals that are in contact with a
particular set of locations, and build a place from this collection. This paper
brings both concepts in conversation.

Scarcity of relevant data is a clear barrier to furthering our under-
standing of social systems (Lazer et al., 2009), such as cities and neigh-
bourhoods (Arribas-Bel, 2014; Shelton & Poorthuis, 2019). Traditional
analyses of neighbourhoods have been limited by the availability of data
that meaningfully represent their extent and accurately capture their nature.
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For the most part, researchers have been limited to the use of official area
estimates such as censuses, or bespoke surveys, each of them with their own
frequency, coverage and bias issues (Spielman, Folch, & Nagle, 2014). The
former provides a representative picture at the expense of low frequency
(e.g. every ten years) and spatial aggregations to administrative boundaries
that ignore the social nature of neighbourhoods; while the latter provides
more detail and fine-grain scale at the cost of limited coverage and rare
repeated collection over time.

Advances in Information and Communication Technology such as lo-
cation-aware technology, sensor technology and mobile technology, have
enabled our capability of collecting detailed data about human dynamics
(Shaw & Sui, 2018). The traditional data landscape in urban and neigh-
bourhood research is currently being redefined by new forms of data.
Characterized by some as a revolution (Kitchin, 2014), the rise of new data
sources are making possible analyses on cities and social systems that just a
few years ago were unthinkable (Lazer & Radford, 2017). New opportu-
nities to explore life in cities have been enabled by the volunteering of
spatio-temporally referenced digital traces left by human use of urban en-
vironments (Campbell et al., 2008; Crooks et al., 2015). One recent source
of particularly interesting data for understanding cities and the places that
make them up are location-based services (LBSs). These are online appli-
cations that, thanks to the geolocation and connectivity technology em-
bedded in smartphones, allow their users to broadcast their location at a
given point in time to their social network. Through these “check-ins”, users
contribute to building databases of locations (or “venues”, in the LBS
jargon) with detailed information not only of their characteristics but also of
the type of people that frequent them. Of all LBS services currently avail-
able, the most prominent, standalone one is Foursquare’. Existing research
using LBSs, and Foursquare more specifically, has focused on studying user
behaviour (e.g. Noulas, Scellato, Mascolo, & Pontil, 2011), the motivations
behind checking in (e.g. Lindqvist, Cranshaw, Wiese, Hong, & Zimmerman,
2011), global mobility patterns (e.g. Noulas, Scellato, Lambiotte, Pontil, &
Mascolo, 2012), or on exploring the extent, coverage and implicit biases
recorded in these datasets (e.g. Arribas-Bel & Bakens, 2019; Hecht &
Stephens, 2014). On their own, data such as Foursquare check-ins provide
insight into both where and when activities are taking place within cities.
But, as we demonstrate in this study, through their linkage, augmentation
and analysis they also provide a great opportunity to model the functional
form and characteristics of neighbourhoods within cities.

New urban data require new urban analytics (Batty, 2019; Singleton,
Spielman, & Folch, 2017). Developing an understanding of contemporary
human mobility, behaviour, context and outcome poses great challenges to
many existing instruments that urban scholars have traditionally relied
upon for the empirical study of cities (Arribas-Bel, 2014). Because new
forms of data do not represent more of the same nature as traditional
sources, but qualitatively different typologies and characteristics (e.g. more
granular, different sampling strategies and geographical representations), it
is important that methods used to fully leverage and unlock their potential
recognize it and be tailored to their unique nature. In other disciplines,
advances in this direction are being made in the nascent field of Data Sci-
ence (Donoho, 2017) and, within the discipline of Geography, there are also
calls for a Geographic and/or Urban Data Science (Arribas-Bel & Reades,
2018; Organizers et al., 2019; Singleton & Arribas-Bel, 2019).

A methodological area with great promise for the analysis of cities and
their structure is network science. Networks are an increasingly important
conceptual and methodological tool in contemporary urban theory. They
are used to both represent and model various types of interaction, flow or
relation (e.g. movement, finance, communication, friendships etc), and to
elucidate the hidden structure manifest through the agglomeration of
human connections (Nelson & Rae, 2016; Ratti, 2004). Many applications of
networks focus on human dynamics across a range of temporal scales: from
mapping patterns of global migration to daily commuting patterns

LLBS services are also integrated in larger social media platforms such as
Facebook or Twitter.
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(Campbell et al., 2008). Network analysis has also been applied to new data
sources, such as LBS. Noulas et al. (2012) use Foursquare data to uncover
universal pattern in human urban mobility. In Jiang and Miao (2015),
spatial traces from a former location social media, have been used to build
an Irregular Triangulated Network and analyse the evolution of natural
cities. Jiang and Miao (2015)’s work has demonstrated the potential of these
new data sources to generate realistic geographic units bottom-up and, as
they put it, social media such as “Fourquare can act as a proxy for studying
and understanding evolving mechanism of cities” Jiang and Miao (2015).
To obtain geographic units from network data, scholars have increasingly
combined the use of community detection algorithms, a traditional network
science approach, with the spatial element Ratti et al. (2010), Chen, Xu, and
Xu (2015), Gao, Liu, Wang, and Ma (2013), Guo, Jin, Gao, and Zhu (2018).

In the present study, we couple information from Foursquare with
(Geographic) Data Science methods to provide a framework that explores
the functional structure of cities, how their populations' preferences un-
derpin them, and the relationship between activity spaces and their con-
texts. We propose and operationalize the notion of functional neighbour-
hoods, which intersects that of neighbourhood and activity space.

Differently from the traditional conceptualization of neighbourhood -
which also accounts for the identity of people inhabiting it (Kallus & Law-
Yone, 2000) — we only focus on spaces that originate from people move-
ments. Such movements are quantified via Foursquare origin destination
flows — the number of trips that took place by any user from an origin venue
to a destination venue — providing knowledge about the functional role of
neighbourhoods. By functional here we refer to areas that display a sig-
nificant degree of spatial interdependency between venues (Dunford, 2009).
At the same time, we expand the idea of activity space, usually centered on
individuals' day to day experience (Horton & Reynolds, 1971), by disclosing
geographic forms derived from collective behaviours. Then we characterise
the hyper-local built environment of each venue; and explore how built and
experienced environments interact across a wide range of global cities by
building a global typology of functional neighbourhood.

Through this work we introduce a framework to generate functional
neighbourhoods and provide insights into the human dynamics char-
acterizing them. Taking advantage of the global coverage of crowd-
sourced geographic data, our framework also implements a set of
methods to identify functional neighbourhoods sharing similar prop-
erties — in terms of diversity, morphology, people preferences and
mobility — across different cities.

The remainder of the paper is structured as follows: Section 2 de-
scribes the unique dataset we rely upon to build functional neigh-
bourhoods; Section 3 presents the methodological approach we as-
semble, including how we delineate neighbourhoods, how they are
characterized, and how a clustering exercise groups them in similar
types; in Section 4 we discuss our results; and Section 5 concludes with
a discussion and ideas for future work in this area.

2. The data

This work concerns data that were acquired for the Foursquare
Future Cities Challenge (FCC) 2 which provide a set of longitudinal
mobility data describing check in activity (movement) between dif-
ferent venues (POIs) in Chicago, Istanbul, Jakarta, London, Los Angeles,
New York, Paris, Seoul, Singapore and Tokyo. The following data are
provided for each city:

1. A venue information table, providing, the id, coordinates and ca-
tegory for each venue (See Sub-Fig. 1a)

2. A file listing movements between venue pairs aggregated for month-

year and period of the day. Each row consisted of venuel, venue2,
month-year, period and flows (See Sub-Fig. 1b)

2 https://www.futurecitieschallenge.com
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id
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name lat Ing category

0 4adcdal12f964a520643621e3

1 4b9fh106f964a520563537e3

2 4bfa6835b182c9b625397aba

3 51007cBaedb05ffc2bee51a7

4 4bc8648a14d79521fded68e9

Les Grandes Marches 48.853009 2.370073

French Restaurants

Sofa Café 48873162 2.333964 Cafés

Square Paul Langevin 48.847940 2.350379 Parks
Chloé 48.867258 2.326858 Boutiques

Le Bailli de Suffren 48.856703 2.292298 Bistros

venuel

(a) Venues

4adcda08f964a5206f3321e3

4adcda10f964a520af3521e3

4c9f8907d3c2b60cd468d5be

4b52428bf964a5205e7327e3

4b52428bf964a5205e7327e3

4adcda05f964a5208d3221e3

4adcda05f964a5208d3221e3

4adcda05f964a5208d3221e3

4adcda05f364a5208d3221e3

venue2 month period flows
2019-03 NIGHT 1
2018-10 OVERNIGHT 1
2018-05 OVERNIGHT 1
2018-10 MIDDAY 1
2018-11 OVERNIGHT 1

4adcda05f364a5208d3221e3

(b) Movements

Fig. 1. Example rows extracted from the venues and movements tables for Paris.

The data extract refers to April 2017 to March 2019, with each entry
assigned into a time category determined by the time of arrival at
venue2: overnight (00:00:00-05:59:59); morning (06:00:00-09:59:59);
midday (10:00:00-14:59:59); afternoon (15:00:00-18:59:59); and
night (19:00:00-23:59:59). A flows column provides a count of the
number of times any user is recorded as travelling between venue pairs
during a given month-year and time category °. From this column the
number of check-ins at a venue can be calculated through summing the
number of incoming flows arriving at venue2. The data aggregations
are implemented by Foursquare to mitigate privacy concerns. Beyond
the necessary aggregations, there are two further limitations of the FCC
dataset: (i) no data are provided for Brooklyn, USA despite the rest of
NYC having coverage; (ii) very granular venue categories are provided
(e.g. 215 food outlet types, and 813 categories overall).

While Foursquare also provides a hierarchical venue type schema, it
consists of multiple hierarchical levels. This categorical branching is un-
suitable for our evaluation, as we only require one additional level of
coarser categories. In addition, Foursquare's top level categories are too
general for our current analysis. Therefore, to address the second limitation
we manually define our own aggregate groups to simplify the activity types.
While the coarse categories are similar to those defined within Foursquare's
own hierarchical venue type scheme, there are a number of key differences
that make the current set of categories more suitable for our work. For
instance, we consider that spiritual venues, e.g., Buddhist Temples,
Churches and Mosques, are worthy of their own category. In contrast
Spiritual Centres is a sub-category under Professional & Other Places within
Foursquare's hierarchy. In addition we separate Professional & Other Places

3 We visualize the number of flows per month-period combination for each
city in Appendix B.

categories, with our other category consisting of Lines / Queues and Public
Bathrooms. We also identify more suitable coarse categories for a number
sub-categories. For example, we consider the category Shops & Services too
general, and as a result create the category coffee to capture a group of sub-
categories for which a large number of venues exists within the data-set.
Finally, given that there are no inter-city flows, and the fact that interesting
flows exist within airports (between Airport Food Courts, Airport Gates,
Airport Lounges, Airport Services, etc), we define airport as category in-
dependent from the more general travel category. Fig. 2 provides a bar chart
illustrating the category frequencies across all cities by the new classifica-
tion.

3. Methods

The overarching objective of this paper is to provide insight into
emergent urban structures and dynamics for ten global cities. The frame-
work designed for this study is illustrated in Fig. 3. As reported above, two
input data are employed: 1) Foursquare's venues; 2) people movements
between venue pairs. The latter enables the development of a set of urban
mobility networks to which a spatially augmented community detection
algorithm is applied (Section 3.1). The resulting geographic units — func-
tional neighbourhoods — are cohesive zones of interconnected agglomera-
tions of activity emerging from human mobility dynamics. Along with the
analysis of people movement, Foursquare's venues are contextualized within
ten minutes walk catchment areas through several metrics describing the
built environment and behavioural patterns (Section 3.2). To compare the
form and functions of neighbourhoods we posit three drivers of differ-
entiation that include: context, mobility and diversity (Section 3.3). While
contextual metrics are ascribed to each venue and based on its catchment
area (see left hand side of the diagram in Fig. 3), analytics on mobility and
diversity are derived from the urban networks underlying each functional



A. Calafiore, et al.

Computers, Environment and Urban Systems 85 (2021) 101539

food

shoppin:

professional
accomadation {
drinking_establishments
travel

coffee

education{

sport
art_and_entertainment
health

nature

gov
buildings
recreation
money_related
landmarks
spiritual
producers
leisure
events
airport

auto

post
museums
children
agencies
animal_related
broadcasting
clubs
gambling
fairs

tourist

other

Category
---Illllmlll

o

20000

40000 60000 100000

Frequency

80000

Fig. 2. The frequency of venue category types across all cities.

neighbourhood. To upscale the former at a functional neighbourhood level,
all measures linked to venues belonging to the same neighbourhood are
averaged and then reduced through Principal Component Analysis. Finally,
the functional neighbourhoods are clustered to highlight global similarities
across cities. Results are discussed in Section 4.

3.1. Urban networks & functional neighbourhoods

The first stage of our analysis is to detect areas of functional
structure that emerge across different global cities by introducing and
operationalizing the notion of functional neighbourhoods.

Such geographic unit can be seen from two different angles: 1) a ty-
pological perspective where the term functional directly refers to the variety
of activity types that certain areas can afford (Assem, Xu, Buda, &
O'Sullivan, 2016; Gao, Janowicz, & Couclelis, 2017); 2) an organizational
perspective which considers functional those areas made up of places that
display a significant degree of spatial interdependency (Dunford, 2009). The
definition of neighbourhood developed in this study is based on the latter
perspective. We capitalize on the Foursquare flows data and employ com-
munity detection to delineate neighbourhoods where venues are strongly
interconnected through flows of people, therefore suggesting a high level of
interdependency. The use of community detection on mobility networks is
not new (Chen et al., 2015; Gao et al., 2013; Guo et al., 2018; He, Glasser,
Pritchard, Bhamidi, & Kaza, 2019), which are more representative of peo-
ple's activity space (Patterson & Farber, 2015). However, one problem of
these derived geometries is that they tend to have a much higher degree of
overlapping than statistical unit. As Nelson (2020) puts it “the key role of
proximity in the organization and structuring of regions is challenged by the
inside and outside criss-crossing of several flows”.

In this study, we have approached community detection to identify
functional neighbourhoods and balance interdependence between ve-
nues, even when spatially dispersed, and proximity.

Below we first discuss the notion of spatially weighted community
detection, then proceed on our partition selection process, before dis-
cussing the resulting communities.

Spatially weighted community detection: The structure of a network
is typically measured using modularity, with dense connections between
vertices within individual communities and sparse connections between

communities having a higher modularity. A widely used community de-
tection algorithm based on modularity maximization is proposed in Clauset,
Newman, and Moore (2004). It identifies partitions of a network char-
acterized by a high modularity value. However, this approach does not take
into consideration the spatial dimension, which significantly limits the
analysis of networks representing relations among geographical objects. In
recent years, some scholars have introduced different methods to include
space in the community detection process.

Gao et al. (2013) adopt a hierarchical agglomerative clustering al-
gorithm based on a Newman-Girvan modularity metric and an alter-
native modularity function incorporating a gravity model to study the
dynamics of spatial interaction communities. Such modularity measure
compares the real number of edges within communities with the same
estimated value under a random model. This approach favours com-
munities where the number of edges is higher than expected based on
the gravity model. While it increases the probability of generating
disconnected communities, we aim at partitioning interdependent but
possibly adjacent venues to generate non-overlapping, and therefore
more usable, geographical units.

Another method to include the spatial element into community detec-
tion is described in (Chen et al, 2015). A distance decay function P
(d) ~ d™ " is employed to measure the likelihood of a connection between
two nodes and weight the network accordingly, where d is the Euclidean
distance between nodes and n would depend on the size and compactness of
the network. Following this approach the optimal value of n — to maximize
the modularity of each city's network — has to be selected.

An extension of (Chen et al., 2015)’s approach to obtain a more
stable geographic whole is presented in Guo et al. (2018). Such a
method successfully encloses nodes into proximal communities by im-
plementing a spatially contiguity constraint. However, constraining the
partitioning process risks to hide relevant underlying movement pat-
terns between venues located far away. Differently, this work's objec-
tive is to balance the need of proximity required to obtain usable
geographic units with the possibility of relevant, although spatially
distant, relations.

To achieve such objective we propose a selection of the optimal
partitioning by tuning the distance function exponent n — employed to
weight edges — and the resolution parameter as described below.
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Fig. 3. Illustration of the geographic data science framework for the functional and contextual analysis of human dynamics. Methods implemented are in diamonds.
A detailed description of the methods can be found in Section 3. Input and output data are in squares, while the main results are highlighted in bold. The two input
datasets (Venues and Movements) are detailed in Section 2. Results are discussed in Section 4.

Partition selection process: We create cities' networks using
Python's NetworkX library (Hagberg, Swart, & S Chult, 2008), with
nodes representing each venue and edges determined by the existence
of users flows between them. Edges' weights are therefore calculated as
follow: w ~ x * d~ ", where x is the number of flows.

Community detection is implemented using Python's community
package's best partition method that searches for network partitions by
maximizing the modularity using the Louvain heuristics.

To identify the best partitioning for each city's network, we try to

maximize modularity while minimizing the number of nodes where all
spatially adjacent venues belong to a different community. We refer to such
cases as “outliers”. Therefore, we conduct a hyperparameter sweep using
exponents n € {1.0, 1.5, 2.0, ..., 3.5} and the Louvain algorithm's resolution
parameter, res € {0.5, 1.0, 1.5, ..., 6.0}. The resolution determines the time-
sale of the community detection algorithm, whereby increasing the re-
solution produces a larger number of smaller communities (Lambiotte,
Delvenne, & Barahona, 2008). We identify the outliers for each partition by
looking at the Triangulated Irregular Network obtained through the
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Delaunay triangulation algorithm, and select those venues where all spatial
neighbours belong to a different community.

For the majority of the cities (London, Paris, New York Seoul, Los
Angeles, Singapore, Tokyo and Chicago), the highest modularity is
achieved using either a decay exponent n = 2.0 or n = 2.5, while the
highest modularity resulted from n = 1.5 for Jakarta “. In contrast, for
Istanbul a modularity of 0.99 is achieved for all of the listed exponents
n = 2.0 (See heatmaps in Appendix C for an overview). We observe that
as the exponent n increases so does the number of outliers (See Fig.
D.18 in the Appendix). To identify which partitioning parameters (n
and res) minimize the number of outliers while maintaining the highest
possible modularity, we compute an evaluation metric:

Si = Zmi — Zoi (€9)

In the above equation we compute and subtract the z-scores for the
modularities m € M and the outliers o € O for each hyperapraeter combi-
nation i. The motivation for subtracting the z-score for the number of out-
liers is that we want to identify partitions with a low number of outliers. For
each city we choose the partition that maximizes the metric s. Interestingly,
we find that for each city an exponent n = 1.5 is optimal as a result of the
cities having a similar distance decay pattern (see Fig. 4).

Outcome: The outcome is a set of functional neighbourhoods for
each of the cities (See Table 1 for details and Fig. 5 for an illustration of
the neighbourhoods for London and New York). Polygon boundaries are
created by excluding the outliers and applying an Alpha Shape (Kittel,
2019) to the associated venue locations within each identified com-
munity. The algorithm proposed by Edelsbrunner, Kirkpatrick, and
Seidel (1983) is used to automatically determine the alpha value that
enables the tightest polygon that contains all points for each neigh-
bourhood. Each functional neighbourhood corresponds to a community
of nodes, representing a distinctive aggregate Foursquare user activity,
and bringing together venues with a high degree of interdependence.

While we capture the outliers — individual venues not located in the
spatial proximity of their community — we note the existence of clusters
with few venues spatially separated from the community they belong to. By
applying alpha shapes on each community we manage to visually identify
these small clusters of venues, which highlight interesting underlying pat-
terns. In London for instance the majority of venues within community 18
are located in the north east Holloway area. However, we observe that the
community includes a sub-community of venues — that have not been
classified as outliers — located at Heathrow Airport (see Sub-Fig. 5a). We
find that 595 edges with venues belonging to the category “travel” connect
this set of venues with the venues located around the Holloway area. The
FCC data therefore captures the transportation links that exist between these
two locations (e.g., via the Piccadilly line). Meanwhile, for New York we
observe that a significant number of flows occur between community 14
and the East River Tunnels (see Sub-Fig. 5b).

3.2. Contextualizing venues locations

Venue linkage through user interaction and their geographic location
drive the spatially differentiated functional neighbourhoods demonstrated
in the previous section; however, at the local scale, these patterns of use are
driven by the venue type (e.g. travel, food etc); and other contextual
measures. Some literature within urban planning and architecture explores
how the morphology of the built environment (e.g. street geometry) may
influence activity within places and limit or enhance attraction between
locations (Ratti, 2004). Previous studies have examined the impact of how
space syntax variables relating to urban morphology influence the pro-
pensity for non-motorised transport modes (Rybarczyk & Wu, 2014) and
walkable pedestrian spaces (Frank et al., 2009). In our case, the objective
here is to capture a collection of contextual measures that characterise each

4 Previous studies have often found n ~ 2.0 to be optimal across a range of
data-sets (Chen et al., 2015).
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Fig. 4. The proportion of flows by distance using 100 m bins.

check-in by aspects of street topology, density, connectedness and beha-
vioural patterns. Thus, we contextualise venues locally before aggregation
within functional neighbourhoods to facilitate a comparison.

The first stage requires creation of a “catchment” area for each of the
330k venues; which are defined as a ten minute walk around each
Foursquare venue. A polygon delineating the bounding box of all venue
locations within each city was used to create a NetworkX (Hagberg et al.,
2008) graph from OpenStreetMap (OSM) data using the OSMnx library
(Boeing, 2017). For each city level graph, a sub graph is induced outwards
from the venue location. Those nodes and edges captured by each sub graph
are selected according to a ten minute walking distance (see Fig. 6). As-
suming the average person walks a speed of five kilometres per hour, an
individual covers 800 m in a ten minute walk from each Foursquare venue.
This is considered in the “Manual for Streets” by the Bradbury et al. (2007)
as the timescale and distance of a walkable built environment, and so re-
presents a sensible catchment reflective of the urban environment im-
mediately accessible to the individual from the venue. From these walk
radii, the convex hull of nodes within the sub graph that are accessible
within a ten minute walk are then extracted; which are the catchment areas
used in the subsequent analysis.

For each catchment area, we define a series of measures that are
summarized in Table 2. These are derived from both Foursquare ac-
tivity to highlight spatio-temporal dynamics of check-in behaviour, and
a variety of street network measures that expose the morphological
structure of the catchments. Measures of topology, density and con-
nectedness have been shown to reveal insight into common mobility
and design characteristics that differentiate pedestrian-orientated en-
vironments from those which are more auto-orientated. For example,
‘average circuity’ measures the extent that our catchments deviate from
the spatial ordering logic of dense (orthogonal) grids to sparse networks
of circuitous, curving streets that form loops and lollipops (Ewing &
Cervero, 2010). Unlike street networks with high curvature, a gridiron
geometry allows a longer line of sight that enables pedestrians to better
visualize their surroundings and navigate across their environment
(Hajrasouliha and Yin, 2015). Another measure, ‘average street length’,
provides a linear approximation of block size (Boeing, 2017). Further
topology-based characteristics such as ‘street per node average’ mea-
sures the mean number of physical streets that emanate from street
intersections and dead-ends, which proxies the complexity of streets.

In addition to topology, we derive several density-based measures
that describe characteristics teristics such as walkability of the urban
form. ‘Node density’, the number of intersections divided by the area
covering the network, relays information about the extent of street
connectivity. More intersections are generally suggestive of an en-
vironment more amenable to pedestrian walkability (Frank et al.,
2009), and have been used previously to derive scores that are acces-
sible to the general public through online tools like Walkscore. Addi-
tional variables we include to describe street network density are the
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Table 1
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The frequency of functional neighbourhoods identified for each city, mean (i) venues per community, alongside the mean (i) and standard deviation (o) of the edge
distance in KM, as well as the Louvain algorithm's resolution parameter and the number of outliers.

City Neighbourhoods (Count) |  Venue | p Distance | o Distance | Venues (Total) | Edges (Total) | Resolution | Outliers
Istanbul 211 1387.2 7.397 9.251 113,752 6,450,218 1.5 6179
Paris 44 165.7 3.183 4.422 13,588 4,198,732 6.0 92
Seoul 66 189.5 4.074 4.584 15,545 4,248,317 5.5 205
Singapore 94 284.4 4.950 5.727 23,324 4,671,817 5.0 351
Tokyo 183 705.0 4.544 6.420 57,810 5,435,836 4.0 354
London 82 276.6 3.721 4.958 22,689 4,834,661 1.5 437
Los Angeles 5 193.5 6.833 7.763 15,868 5,026,393 1.5 157
Jakarta 72 266.0 4.206 4.357 21,813 4,251,002 2.0 1223
New York 79 402.0 3.409 4.593 32,971 5,965,441 2.5 642
Chicago 58 169.5 4.610 5.821 13,904 4,921,583 3.5 146

(a) London, England.

(b) New York, USA.

Fig. 5. Functional neighbourhoods within London and New York. Both images contain partitions with interesting outliers that are not located in spatially adjacent
neighbourhoods (blue). For London we see Heathrow Airport belongs to the same cluster situated around community 18 in the north east. For New York meanwhile
the East River Tunnels belong to community 14 (Note; venues data for Brooklyn was not provided). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

Fig. 6. A Catchment showing a ten minute walking radius along a street net-
work in Paris built from a venue (red), with other venues within the catchment
highlighted in yellow. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

absolute count of nodes (intersections) n and the mean number of in-
bound and outbound streets incident to the nodes, k avg. Alongside
density, we also considered the ‘eigenvector centrality ratio’ which is a
measure of street network connectedness; which has been correlated to
footfall volume (Hajrasouliha & Yin, 2015). While OSMnx provide over
forty measures describing the morphological and topological conditions
of road networks, the majority of these exhibit significant positive

correlation, which is undesirable for subsequent analyses like clustering
due to implicit redundancy inherit in the data (Liu & Yu, 2005). To
mitigate potential effects introduced by collinearity, we adopt a heur-
istic employed in the construction of Work-Place Zone classifications for
London created by (Singleton & Longley, 2019) on behalf of the Greater
London Authority, which we take as an example of best practice.
Variable pairs with a correlation = 0.8 were investigated, and for each,
the sum of their correlation with every other variable taken. Thus, for
each pair, we create a sum of correlations to every other variable in the
data. Within the pair, the variable that has the highest sum of corre-
lations to every other variable is removed from selection.

Alongside morphology and topology, we explore behavioural practices
revealed though Foursquare check-ins within each catchment. Every spatial
choice (or check-in) reflects a conscious decision-making process that can be
used to infer types of urban activity. These insights are not just revealed
from the mobility itself, but from meta-data that contextualises these ex-
periences within the urban environment. Our variable ‘Percent Same Type’
describes the percentage of additional check-ins at venues located within
the catchment that share the same Foursquare category tag to the check-in
at the venue used to generate the catchment. This measure communicates
the degree of heterogeneity in the kinds of check-ins within our catchments,
with catchments intersected by a large percentage of similar activities ties
offering more homogeneous consumption, leisure and service spaces. Our
next variable, ‘venue count’, reflects a raw summation of the number of
additional check-ins at venues that intersect the catchment of the original
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Measures used to compare venues catchment areas using the OSM network.

Measure

Description

Label

Topological
Average Circuity
Self-loop Proportion
Street Length Average
Street Length Total
Street Per Node Average
Density and connectedness
k Average
n
Node Density Km
Eigenvector Centrality Ratio
Behavioural
Percent Same Type
Check-ins Count
Average Morning
Average Midday
Average Afternoon
Average Night

Average Overnight

Total edge length divided by sum of great circle distance between nodes incident to each edge.

Proportion of edges in catchment that have a single incident node (or loop).
Mean edge length in undirected representation of catchment (meters).
Sum of edge lengths in undirected representation of catchment.

Average number of streets per node.

Average degree of catchment.
Number of nodes in catchment
n divided by area in square kilometers.

Ratio of eigenvector centrality between venues and other venues within catchment.

Percentage of check-ins to venues of same category inside catchment.

Summation of total check-ins to all venues inside catchment.

Average Foursquare check-ins of all venues in catchment between 06:00 and 09:59 (%).
Average Foursquare check-ins of all venues in catchment between 10:00 and 14:59 (%).
Average Foursquare check-ins of all venues in catchment between 15:00 and 18:59 (%).
Average Foursquare check-ins of all venues in catchment between 19:00 and 23:59 (%).

Average Foursquare check-ins of all venues in catchment between 00:00 and 05:59 (%).

circuity_avg
self_loop_proportion
street_length_avg
street_length_total

street_per_node_avg

k_avg
n
node_density_km

ratio_eig

percent_same_type
n_pois
avg_morning
avg_midday
avg_afternoon
avg_night

avg_overnight

venue. This allows us to proxy the popularity of the urban environment
within the catchment. Finally, we expose temporal dynamics of check-in
activity by examining distributional splits between morning, midday,
afternoon, night and overnight.

Together, our many venue catchments nest into different functional
neighbourhood definitions, with the tenant mix of these places (alongside
their built environment characteristics) expressive of the underlying scene a
neighbourhood projects to residents and passers-by. Venues as amenities are
windows into the scenes of neighbourhoods which reveal plausible beha-
vioural patterns that encode expressions of local traditions, taste and pre-
ferences (Silver & Clark, 2016). Ultimately, our approach contextualises
these functional neighbourhoods by the multi-dimensional properties of
different activities and experiences offered by each neighbourhood's range
of venues and built environment characteristics. Across all venues inside
each neighbourhood, we find that averaging the values for the variables
identified in Table 2 best reflects the aggregate character and profile of the
functional neighbourhoods.

3.3. Understanding and comparing human dynamics in functional
neighbourhoods

As Shaw and Sui (2018) put it, “human dynamic research is not just
about human”. On the contrary, it requires a comprehensive characteriza-
tion of the environmental factors that determine certain behavioural pat-
terns (Shaw & Sui, 2018). Therefore, to gain an understanding of human
dynamics in cities, we develop a multidimensional description of the
functional neighbourhoods, implementing k-means clustering, that accounts

for human and non-human elements, such as entities in the physical spaces.
We posit three drivers of functional neighbourhood differentiation that in-
clude: diversity, context and mobility. While we outline each driver in detail
below, we provide a short description for each in Table 3.

Diversity: The variety of venue categories within a functional
neighbourhood provides a measure of diversity insofar as it allows
people to perform different activities within these areas (i.e. dining,
shopping, working). A widely used measure summarising diversity is
the Shannon Index, which was first developed in the context of in-
formation theory to capture the predictability of certain content to
appear in a message (Shannon, 1948). However, as implemented here,
this provided us with an entropy measure characterizing the different
mix of venue categories within each functional neighbourhood.

Entropy is therefore calculated according to the Shannon Index as
follows:

H=- pilnp;,
; 2

where s is the number of categories, p; is the proportion of venues of
each category and In is the natural log. A high value of H corresponds to
highly entropic functional neighbourhoods, where venues tend to be
classified by a wider variety of categories (richness), and it is more
difficult to predict which category a new venues will fall within
(evenness).

Context: Check-ins present descriptive measures for contextualizing
human activity and behavioural patterns. The proportion of check-ins by
time of day (morning, midday, ...) represent spatio-temporal aspects of

Table 3
Functional neighbourhood differentiation.
Measure Description
Diversity Diversity is measured in the categories of venues by computing an entropy score (Shannon Index)
Context The aggregation (mean) of venues information resulting from the catchment area morphological profiles (topological, density and connectedness metrics) and type

and average check-ins by time of day (behavioural metrics) (see Table 2)

Mobility Functional neighbourhood distance decay function
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Fig. 7. Clustergrams showing how different iterations of k impacted the cluster PCA weighted mean separation.

human presence within each area, and are averaged over all venues within
each neighbourhood. The means of the variables (n pois, percent same type,
ratio eig, streets per node avg., street length total, street length avg., self
loop proportion, circuity avg., k avg., n, node density km) characterizing
catchment morphology and people preferences are reduced through the
application of Principal Component Analysis. PCA is a statistical tool com-
monly used to reduce a large number of possibly correlated variables into a
smaller set of uncorrelated components. A mathematical transformation is
applied to maintain most of the information in the data accounting for as
much of the variability as possible. We identify four principal components
that explain 77% of the variance derived.

Mobility: The richness of the Foursquare data allows us to further
elucidate different aspects of people's behaviour: notably spatial interaction.
For these measures we examine trip length between check-ins to gain in-
formation on about human mobility patterns within the functional neigh-
bourhoods. We define the aggregate neighbourhood mobility matemathi-
cally through a parameterized exponential decay function f(x;. ;) in the
Equation below, which establishes two parameters d and k to approximate
the proportion of flows by distance (k moderates the decay rate d). Eq. (3)
takes a vector x;_, of distance bin values, and returns the approximated
number of flows for each value in x;. We use TensorFlow to obtain the best
fit for each of the city's empirical observations y; ., optimizing parameters
d and k by minimizing the L, loss between y; _,, and f(x; _ ,,). This provides a
set of exponential decay parameters that estimated likely relative im-
pedance between venues locations for given neighbourhoods.

fa.n) = max;y, X (1.0 — exp.x(—k x d*1-")) 3

Comparing Multidimensional Characteristics: The methods pre-
sented above result in a set of analytics that describe the functional neigh-
bourhoods through features of: venues diversity, context and human mo-
bility. To obtain a multidimensional description and compare
neighbourhoods across all cities we turn to clustering, bringing together

those areas with similar features. A common method to group multi-
dimensional data is k-means algorithm. It clusters data points to minimize
data variance within a k number of partitions. While this method facilitates
comparisons between all features across clusters of functional neighbour-
hoods, a challenge when implementing k-means clustering is to select an
appropriate number of clusters. Here we utilize a clustergram, which along
the x-axis plots a range of potential k values; and along the y-axis a weighted
mean PCA score. Each line relates to a functional neighbourhood and re-
lative score for each iteration of k; and dots represent the cluster average
PCA scores. An indication of the best fit for k relates to a model where these
centroids are well separated (See Fig. 7). From this figure, we select four
clusters as an appropriate k value. Given that k-means is stochastic, we run
the algorithm 10,000 times on the standardised and scaled data with k = 4,
extracting the result that had the lowest total within cluster sum of squares;
i.e., the most compact clusters. After clustering, we append the original data
back onto the clusters and examine the resulting distributions relative to the
global averages.

4. Results and discussion

Before presenting results from the cluster analysis in Section 4.1, we
first discuss our findings along each of the three analytical dimensions
of diversity, context and mobility. Correlation coefficients are calcu-
lated to complement interpretation of the results °. Diversity: The
Shannon indices reveal that 66% of the functional neighbourhoods
have entropy scores ranging from moderately low (1.7) to moderately
high (2.4), while 204 of the functional neighbourhoods are highly en-
tropic (> 2.4) and 81 have very low diversity °.

The functional neighbourhoods belonging to the latter group are

5 Pearson’s correlation coefficients can be found in Figure A. 15 in Appendix A
© Classes are based on Jenks breaks.
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found across the ten cities and tend to be smaller and located in per-
ipheral areas; in contrast, 50% of the most entropic functional neigh-
bourhoods are all placed within the city of Istanbul. To understand
which characteristics of the functional neighbourhoods may drive di-
versity we examine the correlation with the other variables, and with
the venues count within each functional neighbourhood (see Appendix
A.15). We found a high (0.4) and statistically significant correlation
between venues count and diversity which reflects the entropy char-
acterizing Istanbul's functional neighbourhoods — which is the sample
city with the largest number of venues.

The time and context of human activities: Check-ins are mostly
made between midday and night within in each city (see Appendix
B.16). By analyzing check-in temporal distribution we observe a strong
and significant negative correlation (—0.77) of the midday check-ins
with those recorded at night. Bearing in mind that the majority of
check-ins are almost always made at midday, during these two time
intervals the share of check-ins have a very dissimilar geographic dis-
tribution. This suggests a tendency towards specialization within cer-
tain neighbourhoods of the city: some areas clearly function to perform
midday activities with a very low proportion of night check-ins; at the
same time, areas with higher proportion of night check-ins show a
lower than average share in midday check-ins (see Fig. 8). We also note
that there is no direct correlation between check-ins in those time
frames and diversity in venue categories (see Fig. A.15). This suggests
that the temporal specialization of functional neighbourhoods is likely
to be independent from specific category types. This result is in line
with previous studies, investigating the relation of temporal signatures
with venues categories, and identifying both types with strong regional
variability and similar patterns across cities (McKenzie, Janowicz, Gao,
& Gong, 2015).

Next, we consider findings from our Principal Component Analysis
which aims to capture the context of venues within each functional
neighbourhood. These findings are summarized by biplots in Fig. 9,
where each black circle identifies the score of functional neighbour-
hoods on the first four principal components, while the arrows identify
the loading (or influence) of each variable in Table 2 on the compo-
nents. To aid interpretation, the vector angles in the figure can be used
to identify correlations between groups of variables. We characterise
these components as follows:

e PC1 value is driven up by self-loops and circuity. Self loop designs
like cul-de-sacs might be more common in suburban residential
areas that have less predictable, grid-like street geometries. On the
contrary, high number of intersections (n) and strong network
connectivity (k avg) — generally characterizing pedestrian-oriented
areas — have a negative load on PC1 (see Fig. 9a).

e PC2 positive value corresponds to functional neighbourhoods of

considerable size, therefore with longer total street length. On the

other hand, the average number of streets per node loads negatively
onto the component. These two variables are negatively correlated

(as suggested by the diverging arrows) and complemented by con-

trasting user behaviours. While variegated user preferences (n pois)

play a role in driving up the value of this component, the check-in
behaviour of individuals patronising neighbourhoods with negative

PC2 value reflect less diverse, and more homogeneous consumption

spaces (percent same type).

PC3 and PC4 only explain 23% of the variability in the data and are

mostly influenced by four variables moving in opposite directions.

PC3 captures neighbourhoods described by a higher than average

self loop proportion, which is indicative of street networks that

consist of many loops and lollipop roads. In the other direction, the
loading for the streets per node avg. variable indicates a negative
correlation to the component, which suggests that intersections in
these neighbourhoods are typically connected by a higher number of
streets. Following a similar trend, neighbourhoods with a high value
in PC4 are more characterized by users with preference towards a
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narrow sub-set of venues categories while low values are sig-
nificantly driven by high connectivity (ratio eig).

Mobility: As outlined in Section 3.3, to capture mobility patterns
we extrapolate two parameters describing the best fit distance decay
function for each neighbourhood on distance bins with a size of 100 m
per bin. Parameter d has the most direct impact on the curve's slope,
while k acts as a moderator. Both parameters determine to what extent
long distances are travelled between venues within a neighbourhood. A
steep slope (low d and k) is indicative of neighbourhoods where there is
a sharp decay in the number flows as the distance between venues in-
creases, i.e., we observe a larger number of flows between more prox-
imal venue pairs. In contrast, a gradual slope can be observed within
neighbourhoods where there is a slower decay in the number of flows
per bin as the distance between venue pairs increases, i.e., people more
frequently travel longer distances between venues. As expected para-
meter d has a negative correlation with the number of venues, allowing
users to remain local, and thereby travel shorter distances between
venues. The majority of the neighbourhoods are characterized by a
rather steep function — 98% of the neighbourhoods have a d < 0.4 -
while the few neighbourhoods with a more gradual decay are mostly
located in Los Angeles and Chicago. Fig. 10 shows two examples of how
the modelled estimates capture the mobility structure of a neighbour-
hood where we see more flows between close venues — Fig. 10a — or
where entries with longer distances between venues are more frequent -
Fig. 10b. However, we observe that a few very small neighbourhoods
located on the cities' outskirts exist, that are not properly described by
our function (e.g., see Fig. 11).

4.1. Clustering

The four clusters resulting from the k-means algorithm combine the
analytics reported above into a multidimensional description of
neighbourhood types. We describe the characteristics of each neigh-
bourhood cluster below ”.)

® Cluster 1 (size 169) classifies neighbourhoods mostly located in
Singapore and Istanbul. This cluster is characterized by having a
very high entropy score. Furthermore, the proportions of night and
overnight check-ins - the latter represents the least frequent check-in
periods within the FCC dataset ® — are above average. The mobility
structure of the neighbourhood shows a less than average steepness
in the distance decay function. These neighbourhoods are char-
acterized by cul — de — sac design (high PC1 and PC3).
® Cluster 2 (size 257) classifies neighbourhoods which have a di-
versity score almost on average (the standardize value approaches
zero), and are popular locations for morning and midday activities.
They are more likely to be residential areas (high PC1) and favour
rather fixed behaviours (low PC3 mostly influenced by check-ins in
venues of the same type). Short distance movements are preferred as
emerging from a mobility structure well approximated by a sig-
nificantly steep distance decay function (both k and d lower than
average).
Cluster 3 (size 129) comprises neighbourhoods with moderately
high entropy. We also observe a high number of check-ins during
commuting peak periods: morning and afternoon. PC2 is generally
positive, suggesting that such neighbourhoods tend to be of a con-
siderable size (with longer total street length). Accordingly, this
cluster's mobility structure has the most gradual distance decay
slope, therefore users typically travel longer distances between ve-
nues compared to the neighbourhoods within the other clusters.

7 See Fig. 12 for details regarding the standardised averages for each cluster-
variable pair.
8 See month-period check-ins visualization in Appendix B.
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Fig. 8. Two exemplary cities sharing similar temporal geography: check-ins are not evenly distributed by day time in the functional neighbourhoods with the most

striking distinction in check-ins between the classes of midday and night.

® Cluster 4 (size 312) is characterized by a very low diversity com-
bined with high number of afternoon and night check-ins. In these
neighbourhoods short distance trips between venues are the most
common, resulting in the most steep distance decay function slope,
and the area tends to be the most walkable (PC1 and PC2 lower than
average, demonstrating the high connectivity of the road network).

Human Dynamics within Global Cities: From the clustering
analysis we can finally uncover human dynamics emerging from the
data across the ten cities. The frequency of venues within each of the
functional neighbourhood clusters is shown in Fig. 13. Cluster 1 clas-
sifies almost exclusively neighbourhoods in Singapore and Istanbul,
where we observe a high entropy score, an active nightlife and a street
network with long street segments and an high number of self-loops.
Cluster 2 and 4 neighbourhoods are the most common across the ten
cities. These clusters split neighbourhoods based on typical activity
time, until midday the former and from the afternoon onward the latter.
Despite temporal differences, short distance movements are prevalent
in both cases, as well as a moderately high connectivity of the street
network. Half of Los Angeles venues are located in Cluster 3 neigh-
bourhoods, followed by Istanbul and Chicago. A remarkable char-
acteristic of these areas is a mobility structure that favours long dis-
tance movements. Unsurprisingly, a car-centric city as Los Angeles sees
the higher concentration of venues in such Cluster.

The utility of these distributions can be illustrated by plotting ar-
chetypal functional neighbourhoods across cities. We do this by ex-
amining the input scores for each neighbourhood, and selecting those
that are closest to the average for a particular cluster (see Fig. 14). We
would expect these functional neighbourhoods to have similar char-
acteristics in terms of venues diversity, urban morphology, user check-
in behaviour and mobility structure. Our approach results in global
typologies that bring together very different cities. In line with

Robinson (2006)’s idea of ordinary cities, we aim at highlighting the
diversity and similarity of human dynamics in a variety of contexts
worldwide. At the same time, such comparative endeavour does not
exclude the possibility to investigate differences within each city.
Previous studies turned to clustering, using different kind of data
sources, to profile urban areas by the prevalent activity types (Assem
et al.,, 2016; Calabrese, Reades, & Ratti, 2009; Gao et al.,, 2017;
Lenormand et al., 2015) or to identify land use patterns (D'Andrea,
Ducange, Loffreno, Marcelloni, & Zaccone, 2018; Grauwin, Sobolevsky,
Moritz, Godor, & Ratti, 2015). While these works result in typologies
describing the urban environment from a single perspective - the use of
space - our profiling approach is designed to combine elements of the
built environment, such as the street morphology and the diversity in
venues type, with information about human behaviours. A direct ap-
plication of our framework is urban planning. Outcomes of our fra-
mework would help urban planners to identify meaningful relations
between aspects of the built environment — such as its diversity and
morphological structure — and certain behaviours. While the study of
the interaction between human activity and the built environment is at
the core of urban planning practice (Gehl & Svarre, 2013), it is mostly
based on observation (Gehl & Svarre, 2013), rendering evidence-based
studies time consuming and focused only on limited areas (Ertio, 2015).
In line with data intensive approaches to urban planning (Batty, 2013;
Singleton et al., 2017), our framework capitalizes on the availability of
data at a global scale to investigate human dynamics, describing the
way behavioural patterns are combined with characteristics of the built
environment. While relations across variables are not linear (see Fig.
A.15 in Appendix A) — with exception of a significant temporal diver-
gence when neighbourhoods are more popular — through a clustering
approach we maintain a multi dimensional neighbourhood character-
ization. This enables to identify various declination of similar patterns
across cities. For example cities such as Singapore or Istanbul have

11
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Fig. 9. Variables contributing to PC1 & PC2 (a) and PC3 & PC4 (b).

several neighbourhoods where a high number of night check-ins is
linked with a walkable environment with high diversity (see Cluster 1);
in Tokyo or Seoul neighbourhoods characterized by the same temporal
signature are instead combined with a low diversity and prevalence of
short-distance movements (see Cluster 4).

5. Conclusion

A well rehearsed problem of working with crowdsourced informa-
tion relates to its representativeness (Blank & Lutz, 2017; Mart',
Serrano-Estrada, & Nolasco-Cirugeda, 2019). Some studies (Ballatore &
De Sabbata, 2018, 2019) explore the geo-demographic context where
the production process of user generated information takes place and —
comparing Greater London and Los Angeles — have shown that the way
information and socio-demographic geographies overlap can vary
considerably among cities. In light of this, we acknowledge that FCC
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dataset will also be biased towards those venues added by the Four-
square user-base, and as such, differences may exist between reality and
the geographical coverage of the dataset used in this work. Such issues
might be explored in future work examining the correspondence be-
tween Foursquare check-in locations and the universe of other potential
sites recorded in ancillary points of interest data.

It is also important to state that the crowdsourced nature of the FCC
data may impact upon the shape, scale and extent of the derived re-
presentations and their characterization. For example, the entropy
scores are based on categories of venues that are added by the
Foursquare user-base. This indicates that venues might not reflect
comprehensively the true variety of businesses within cities. Some ca-
tegories of venues — probably those perceived as more interesting by the
users — or when the user is a business owner looking to advertise their
activity, e.g., food or drinking establishments — are over-represented (as
evident from the check-ins per category illustrated in Fig. 2). For ex-
ample, the low diversity score found in Paris city center — where a large
proportion of venues can be categorised as being touristic services such
as accommodation and food - are likely driven by the users' interests
within that area. By contrast, Los Angeles follows a different and per-
haps more expected pattern where downtown is the most diverse area.
The limited universe of venues within Foursquare's database also affects
the check-in counts, which are therefore only possible in their mapped
venues. In addition, we hypothesize that the number check-ins during
each period will be influenced by the users' daily routines, i.e., certain
venue types will be less likely to experience check-ins during what one
would consider to be typical working hours. Therefore, results on the
check-in percentage by time of day should be interpreted by taking such
considerations into account. Furthermore, while the FCC dataset does
not allow us to differentiate check-ins that occur during the typical
working week (Monday — Friday) from the weekend, we consider that
obtaining this additional level of granularity could open up interesting
avenues for future research.

Catchment areas — used to characterise the venue's context — are
computed based on the Open Street Map (OSM) road network which is
also populated by user generated data. OSM data quality has been as-
sessed in the UK (Haklay, 2010) and France (Girres & Touya, 2010)
through a comparison framework to evaluate such data against national
reference geographic databases. Results show that while the positional
accuracy of the road network is fairly adequate, disadvantaged and
rural areas have weaker coverage.

Although we recognize that detecting biases in crowdsourced data is
still a major challenge to the application of geographic data science
methods (Mart'1 et al., 2019), it must be acknowledged that the un-
precedented volume, velocity and variety (De Mauro, Greco, &
Grimaldi, 2015) of information afforded by big data open up novel
opportunities for obtaining insights about urban contexts. Evaluations
of crowdsourced geographic information, along with mobile phone
data, have provided knowledge on a variety of urban facets, e.g.,
highlighting issues of intra-neighbourhood segregation, mobility and
inequality (Shelton, Poorthuis, & Zook, 2015), automatically suggesting
routes that are both short and emotionally pleasant (Quercia,
Schifanella, & Aiello, 2014), and providing insights into the physical
aspects of cities and the spatial distribution of urban functions (Arribas-
Bel, Kourtit, Nijkamp, & Steenbruggen, 2015).

As Miller and Goodchild (2015) put it, the widening use of big data
in geography should be interpreted as evolutionary, rather than re-
volutionary, to geo-spatial research, complementing and augmenting
existing data sources and methods. In particular, crowdsourced geo-
spatial data offers the researcher a glimpse into the intangible aspects of
urban life, such as people's spatial behaviours and preferences (Sui &
Goodchild, 2011). These domains are well beyond the scope of official
geographic data provided by institutional agencies, and have been
traditionally captured through observational methods (Gehl & Svarre,
2013) at higher cost, slower speed and with much more limited cov-
erage (Quercia, Aiello, Schifanella, & Davies, 2015).
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Fig. 10. Two modelled line examples for Chicago.
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Fig. 12. Standardised averages for each cluster-variable pair.
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Seoul 1 n
Paris n 10
New York 2 33
Los Angeles 8 25
London 9 44
Jakarta 7 _
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Fig. 13. The % of venues within functional neighbourhood clusters by city.

(c) London.

(d) Tokyo.

Fig. 14. Archetypal functional neighbourhoods from Cluster 4. The neighbourhoods are characterized by a low entropy score, are very dense areas with a highly
connected street network within which people predominately move short distances between venues, and are typically frequented at night.

Furthermore, platform users contribute to the data collection vo-
luntarily which, according to the Hawthorne effect, might be an ad-
vantage compared to traditional methods since the studied population
is unaware of being observed (Mart' et al., 2019).

In addition, the increasing use of such media on a global scale al-
lows scholars and analysts to employ internationally integrated data.
This facilitates comparisons across cities around the world, overcoming
existing gaps in the availability and interoperability of institutional
open geographic data.

Results of our framework can be input for the development of urban
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theories and, consequently, planning strategies in a variety of contexts. We
capitalize on the human content provided by this data, such as people be-
haviours in terms of temporal movements and venues check-ins, bringing
about a human-centric approach to geographic data science methods.

First, we generate geometries - functional neighbourhoods - en-
tailing venues with strong interdependence over geographical space.
Differently from administrative units, these are areas emerging from
human interaction with the built environment in their activity space
and as such they provide scholars and planners with the spatial forms
underlying human dynamics.
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Second, a set of urban analytics are developed to describe the main
features of functional neighbourhoods. We select variables to mix be-
havioural patterns and characteristics of the built environment into a
multidimensional characterization.

Third, functional neighbourhoods are clustered and profiled. This
final output is well suited towards identifying and describing similar
neighbourhoods between and within cities.

Outputs of our framework can significantly address further in-
vestigation into areas of specific interest. In particular, by centering the
unique mix of methods that we propose on the interaction between
humans and the built environment, our framework can be a valuable
tool to support urban planning strategies in different contexts.

There are numerous avenues for future research. As we mention in
Section 2, the data have been aggregated on a month-year and period
basis, determined by the date and time when users arrive at the desti-
nation venue. We are therefore unable to establish if a direct path was
taken by users between venuel and venue2, thereby adding noise.
However, more granular time stamps would enable the exploration of
potential modes of transit linking venue sequences.

In our current evaluation we discover functional neighbourhoods
for each city using all the provided flows. However, as mentioned in
Section 2, the FCC dataset includes movement data for venue pairs
aggregated for month-year and period of the day. This information
opens up interesting opportunities for future research in this area. For
instance, applying our framework to individual periods of the day could
enable a comparison of how functional neighbourhoods change over

Appendix A. Correlation coefficients

=
2 & 2
E W E =
c T L o
£ E
E| E| ° 5
e g e g
¥ T @ ] @ ]
Venues o047 016 -022 006 017 009
k 019 -019 002 008 006
d o0 007 o016 -0.27
avg_morning o2 -04
avg_midday o0.09
avg_afternoon -oar
avg_night

avg_overnight

Computers, Environment and Urban Systems 85 (2021) 101539

time. Utilizing the month-year column meanwhile may enable a long-
itudinal study. We leave such considerations to future work.

Additional variables to characterise and profile the neighbourhoods can
be included, i.e. pollution and congestion data. At the same time new me-
trics to estimate to what extent crowdsourced data such as Foursquare is
representative of the reality can be developed to ensure more robust results.

Furthermore, in its current state our distance decay function is best
suited towards approximating monotonically decaying distance bin
flow counts. However, as we observe in Fig. 11, the number of entries
per bin is not always monotonically decaying, raising the question
whether a more suitable parameterized approach can be found.

We also note that the euclidean distance metric used to identify parti-
tions offers a simplification of true physical distance, as individuals rarely
travel from point A to point B in a straight line. Describing distance in this
way likely underestimates true physical proximity, potentially decreasing
the level of confidence that can be ascribed to the detected communities
which are contingent on spatially-weighted network edges. We leave the
computing of these distances using routing algorithms for future work.

This work has outlined how social media data such as Foursquare can be
utilized to provide insight into the structure and function of cities. Through
our Geographic Data Science workflow we create a framework for identi-
fication and description of functional neighbourhoods across global con-
texts, linking a range of measures ascribed down to the local level. The
framework is portable to other geographic contexts where interaction data
are available to bind different localities into functional agglomerations, and
provide insight into their contextual and human dynamics.
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Fig. A.15. Pearson's correlation coefficients among variables characterizing the functional neighbourhoods. All coefficients which are not significant atp < .01 are

left blank.
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Appendix B. Month-period check-ins visualization
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Appendix C. Modularity visualization
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Fig. C.17. Modularity scores for each exponent decay n and resolution value combination.
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Appendix D. Outliers
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Appendix E. Modularity-outlier metric visualization
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