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A B S T R A C T   

This study develops a Geographic Data Science framework that transforms the Foursquare check-in locations and 
user origin-destination flows data into knowledge about the emerging forms and characteristics of cities' 
neighbourhoods. We employ a longitudinal mobility dataset describing human interactions with Foursquare 
venues in ten global cities: Chicago, Istanbul, Jakarta, London, Los Angeles, New York, Paris, Seoul, Singapore, 
Tokyo. This social media data provides spatio-temporally referenced digital traces left by human use of urban 
environments, giving us access to the intangible aspects of urban life, such as people behaviours and preferences. 
Our framework capitalizes on these new data sources, bringing about a novel Geographic Data Science and 
human-centered methodological approach. Combining network science – a study area with great promise for the 
analysis of cities and their structure – with geospatial analysis methods, we model cities as a series of global 
urban networks. Through a spatially weighted community detection algorithm, we uncover functional neigh
bourhoods for the ten global cities. Each neighbourhood is linked to hyper-local characterisations of their built 
environment for the Foursquare venues that compose them, and complemented with a range of measures de
scribing their diversity, morphology and mobility. This information is used in a clustering exercise that uncovers 
a set of four functional neighbourhood types. Our results enable the profiling and comparison of functional 
neighbourhoods, based on human dynamics and their contexts, across the sample of global cities. The framework 
is portable to other geographic contexts where interaction data are available to bind different localities into 
functional agglomerations, and provide insight into their contextual and human dynamics.   

1. Introduction 

Cities are complex entities at the heart of the main human challenges in 
the present century. Cities have been framed both as engines of innovation, 
productivity and sustainability (Glaeser, 2011), but also as sources of con
centrated pollution and crime (Bettencourt, Lobo, Helbing, Kuhnert, & West, 
2007). Given that the majority of humanity now live within cities (DESA, 
2018), it has never been more important to develop better understanding of 
their main strengths and weaknesses, as well as those mechanisms under
pinning their functional structure and dynamics. 

An important concept when articulating urban structure is the notion of 
the neighbourhood. Neighbourhoods can be understood as the building 
blocks of cities, coherent and meaningful entities that, put together, make 
up a city and can also be leveraged for policy making (PCAST, 2016). There 
is a long tradition within the social sciences to frame the neighbourhood as 
a social construct (Sampson, 2019) that evolves over time, both in nature 
and extent (Knaap, Wolf, Rey, Kang, & Han, 2019). Equally, 

neighbourhoods also have a very physical dimension. At their core, a 
neighbourhood is the geographical representation and delimitation of a 
place that, while being part of a larger more diverse city, shares similar 
character, composition, and/or activity patterns. The concept thus plays at 
the intersection and interaction of the built and lived or experienced en
vironment (Sennett, 2018). In this sense, it relates to that of activity space, 
although it differs in some crucial aspects. While activity spaces thread to
gether a series of locations based on whether an individual has been in 
contact with them in their everyday life (Patterson & Farber, 2015), 
neighbourhoods bring together the individuals that are in contact with a 
particular set of locations, and build a place from this collection. This paper 
brings both concepts in conversation. 

Scarcity of relevant data is a clear barrier to furthering our under
standing of social systems (Lazer et al., 2009), such as cities and neigh
bourhoods (Arribas-Bel, 2014; Shelton & Poorthuis, 2019). Traditional 
analyses of neighbourhoods have been limited by the availability of data 
that meaningfully represent their extent and accurately capture their nature. 
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For the most part, researchers have been limited to the use of official area 
estimates such as censuses, or bespoke surveys, each of them with their own 
frequency, coverage and bias issues (Spielman, Folch, & Nagle, 2014). The 
former provides a representative picture at the expense of low frequency 
(e.g. every ten years) and spatial aggregations to administrative boundaries 
that ignore the social nature of neighbourhoods; while the latter provides 
more detail and fine-grain scale at the cost of limited coverage and rare 
repeated collection over time. 

Advances in Information and Communication Technology such as lo
cation-aware technology, sensor technology and mobile technology, have 
enabled our capability of collecting detailed data about human dynamics 
(Shaw & Sui, 2018). The traditional data landscape in urban and neigh
bourhood research is currently being redefined by new forms of data. 
Characterized by some as a revolution (Kitchin, 2014), the rise of new data 
sources are making possible analyses on cities and social systems that just a 
few years ago were unthinkable (Lazer & Radford, 2017). New opportu
nities to explore life in cities have been enabled by the volunteering of 
spatio-temporally referenced digital traces left by human use of urban en
vironments (Campbell et al., 2008; Crooks et al., 2015). One recent source 
of particularly interesting data for understanding cities and the places that 
make them up are location-based services (LBSs). These are online appli
cations that, thanks to the geolocation and connectivity technology em
bedded in smartphones, allow their users to broadcast their location at a 
given point in time to their social network. Through these “check-ins”, users 
contribute to building databases of locations (or “venues”, in the LBS 
jargon) with detailed information not only of their characteristics but also of 
the type of people that frequent them. Of all LBS services currently avail
able, the most prominent, standalone one is Foursquare1. Existing research 
using LBSs, and Foursquare more specifically, has focused on studying user 
behaviour (e.g. Noulas, Scellato, Mascolo, & Pontil, 2011), the motivations 
behind checking in (e.g. Lindqvist, Cranshaw, Wiese, Hong, & Zimmerman, 
2011), global mobility patterns (e.g. Noulas, Scellato, Lambiotte, Pontil, & 
Mascolo, 2012), or on exploring the extent, coverage and implicit biases 
recorded in these datasets (e.g. Arribas-Bel & Bakens, 2019; Hecht & 
Stephens, 2014). On their own, data such as Foursquare check-ins provide 
insight into both where and when activities are taking place within cities. 
But, as we demonstrate in this study, through their linkage, augmentation 
and analysis they also provide a great opportunity to model the functional 
form and characteristics of neighbourhoods within cities. 

New urban data require new urban analytics (Batty, 2019; Singleton, 
Spielman, & Folch, 2017). Developing an understanding of contemporary 
human mobility, behaviour, context and outcome poses great challenges to 
many existing instruments that urban scholars have traditionally relied 
upon for the empirical study of cities (Arribas-Bel, 2014). Because new 
forms of data do not represent more of the same nature as traditional 
sources, but qualitatively different typologies and characteristics (e.g. more 
granular, different sampling strategies and geographical representations), it 
is important that methods used to fully leverage and unlock their potential 
recognize it and be tailored to their unique nature. In other disciplines, 
advances in this direction are being made in the nascent field of Data Sci
ence (Donoho, 2017) and, within the discipline of Geography, there are also 
calls for a Geographic and/or Urban Data Science (Arribas-Bel & Reades, 
2018; Organizers et al., 2019; Singleton & Arribas-Bel, 2019). 

A methodological area with great promise for the analysis of cities and 
their structure is network science. Networks are an increasingly important 
conceptual and methodological tool in contemporary urban theory. They 
are used to both represent and model various types of interaction, flow or 
relation (e.g. movement, finance, communication, friendships etc), and to 
elucidate the hidden structure manifest through the agglomeration of 
human connections (Nelson & Rae, 2016; Ratti, 2004). Many applications of 
networks focus on human dynamics across a range of temporal scales: from 
mapping patterns of global migration to daily commuting patterns 

(Campbell et al., 2008). Network analysis has also been applied to new data 
sources, such as LBS. Noulas et al. (2012) use Foursquare data to uncover 
universal pattern in human urban mobility. In Jiang and Miao (2015), 
spatial traces from a former location social media, have been used to build 
an Irregular Triangulated Network and analyse the evolution of natural 
cities. Jiang and Miao (2015)’s work has demonstrated the potential of these 
new data sources to generate realistic geographic units bottom-up and, as 
they put it, social media such as “Fourquare can act as a proxy for studying 
and understanding evolving mechanism of cities” Jiang and Miao (2015). 
To obtain geographic units from network data, scholars have increasingly 
combined the use of community detection algorithms, a traditional network 
science approach, with the spatial element Ratti et al. (2010), Chen, Xu, and 
Xu (2015), Gao, Liu, Wang, and Ma (2013), Guo, Jin, Gao, and Zhu (2018). 

In the present study, we couple information from Foursquare with 
(Geographic) Data Science methods to provide a framework that explores 
the functional structure of cities, how their populations' preferences un
derpin them, and the relationship between activity spaces and their con
texts. We propose and operationalize the notion of functional neighbour
hoods, which intersects that of neighbourhood and activity space. 

Differently from the traditional conceptualization of neighbourhood – 
which also accounts for the identity of people inhabiting it (Kallus & Law- 
Yone, 2000) – we only focus on spaces that originate from people move
ments. Such movements are quantified via Foursquare origin destination 
flows – the number of trips that took place by any user from an origin venue 
to a destination venue – providing knowledge about the functional role of 
neighbourhoods. By functional here we refer to areas that display a sig
nificant degree of spatial interdependency between venues (Dunford, 2009). 
At the same time, we expand the idea of activity space, usually centered on 
individuals' day to day experience (Horton & Reynolds, 1971), by disclosing 
geographic forms derived from collective behaviours. Then we characterise 
the hyper-local built environment of each venue; and explore how built and 
experienced environments interact across a wide range of global cities by 
building a global typology of functional neighbourhood. 

Through this work we introduce a framework to generate functional 
neighbourhoods and provide insights into the human dynamics char
acterizing them. Taking advantage of the global coverage of crowd
sourced geographic data, our framework also implements a set of 
methods to identify functional neighbourhoods sharing similar prop
erties – in terms of diversity, morphology, people preferences and 
mobility – across different cities. 

The remainder of the paper is structured as follows: Section 2 de
scribes the unique dataset we rely upon to build functional neigh
bourhoods; Section 3 presents the methodological approach we as
semble, including how we delineate neighbourhoods, how they are 
characterized, and how a clustering exercise groups them in similar 
types; in Section 4 we discuss our results; and Section 5 concludes with 
a discussion and ideas for future work in this area. 

2. The data 

This work concerns data that were acquired for the Foursquare 
Future Cities Challenge (FCC) 2, which provide a set of longitudinal 
mobility data describing check in activity (movement) between dif
ferent venues (POIs) in Chicago, Istanbul, Jakarta, London, Los Angeles, 
New York, Paris, Seoul, Singapore and Tokyo. The following data are 
provided for each city: 

1. A venue information table, providing, the id, coordinates and ca
tegory for each venue (See Sub-Fig. 1a)  

2. A file listing movements between venue pairs aggregated for month- 
year and period of the day. Each row consisted of venue1, venue2, 
month-year, period and flows (See Sub-Fig. 1b) 

1 LBS services are also integrated in larger social media platforms such as 
Facebook or Twitter. 2 https://www.futurecitieschallenge.com 
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The data extract refers to April 2017 to March 2019, with each entry 
assigned into a time category determined by the time of arrival at 
venue2: overnight (00:00:00–05:59:59); morning (06:00:00–09:59:59); 
midday (10:00:00–14:59:59); afternoon (15:00:00–18:59:59); and 
night (19:00:00–23:59:59). A flows column provides a count of the 
number of times any user is recorded as travelling between venue pairs 
during a given month-year and time category 3. From this column the 
number of check-ins at a venue can be calculated through summing the 
number of incoming flows arriving at venue2. The data aggregations 
are implemented by Foursquare to mitigate privacy concerns. Beyond 
the necessary aggregations, there are two further limitations of the FCC 
dataset: (i) no data are provided for Brooklyn, USA despite the rest of 
NYC having coverage; (ii) very granular venue categories are provided 
(e.g. 215 food outlet types, and 813 categories overall). 

While Foursquare also provides a hierarchical venue type schema, it 
consists of multiple hierarchical levels. This categorical branching is un
suitable for our evaluation, as we only require one additional level of 
coarser categories. In addition, Foursquare's top level categories are too 
general for our current analysis. Therefore, to address the second limitation 
we manually define our own aggregate groups to simplify the activity types. 
While the coarse categories are similar to those defined within Foursquare's 
own hierarchical venue type scheme, there are a number of key differences 
that make the current set of categories more suitable for our work. For 
instance, we consider that spiritual venues, e.g., Buddhist Temples, 
Churches and Mosques, are worthy of their own category. In contrast 
Spiritual Centres is a sub-category under Professional & Other Places within 
Foursquare's hierarchy. In addition we separate Professional & Other Places 

categories, with our other category consisting of Lines / Queues and Public 
Bathrooms. We also identify more suitable coarse categories for a number 
sub-categories. For example, we consider the category Shops & Services too 
general, and as a result create the category coffee to capture a group of sub- 
categories for which a large number of venues exists within the data-set. 
Finally, given that there are no inter-city flows, and the fact that interesting 
flows exist within airports (between Airport Food Courts, Airport Gates, 
Airport Lounges, Airport Services, etc), we define airport as category in
dependent from the more general travel category. Fig. 2 provides a bar chart 
illustrating the category frequencies across all cities by the new classifica
tion. 

3. Methods 

The overarching objective of this paper is to provide insight into 
emergent urban structures and dynamics for ten global cities. The frame
work designed for this study is illustrated in Fig. 3. As reported above, two 
input data are employed: 1) Foursquare's venues; 2) people movements 
between venue pairs. The latter enables the development of a set of urban 
mobility networks to which a spatially augmented community detection 
algorithm is applied (Section 3.1). The resulting geographic units – func
tional neighbourhoods – are cohesive zones of interconnected agglomera
tions of activity emerging from human mobility dynamics. Along with the 
analysis of people movement, Foursquare's venues are contextualized within 
ten minutes walk catchment areas through several metrics describing the 
built environment and behavioural patterns (Section 3.2). To compare the 
form and functions of neighbourhoods we posit three drivers of differ
entiation that include: context, mobility and diversity (Section 3.3). While 
contextual metrics are ascribed to each venue and based on its catchment 
area (see left hand side of the diagram in Fig. 3), analytics on mobility and 
diversity are derived from the urban networks underlying each functional 

Fig. 1. Example rows extracted from the venues and movements tables for Paris.  

3 We visualize the number of flows per month-period combination for each 
city in Appendix B. 
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neighbourhood. To upscale the former at a functional neighbourhood level, 
all measures linked to venues belonging to the same neighbourhood are 
averaged and then reduced through Principal Component Analysis. Finally, 
the functional neighbourhoods are clustered to highlight global similarities 
across cities. Results are discussed in Section 4. 

3.1. Urban networks & functional neighbourhoods 

The first stage of our analysis is to detect areas of functional 
structure that emerge across different global cities by introducing and 
operationalizing the notion of functional neighbourhoods. 

Such geographic unit can be seen from two different angles: 1) a ty
pological perspective where the term functional directly refers to the variety 
of activity types that certain areas can afford (Assem, Xu, Buda, & 
O'Sullivan, 2016; Gao, Janowicz, & Couclelis, 2017); 2) an organizational 
perspective which considers functional those areas made up of places that 
display a significant degree of spatial interdependency (Dunford, 2009). The 
definition of neighbourhood developed in this study is based on the latter 
perspective. We capitalize on the Foursquare flows data and employ com
munity detection to delineate neighbourhoods where venues are strongly 
interconnected through flows of people, therefore suggesting a high level of 
interdependency. The use of community detection on mobility networks is 
not new (Chen et al., 2015; Gao et al., 2013; Guo et al., 2018; He, Glasser, 
Pritchard, Bhamidi, & Kaza, 2019), which are more representative of peo
ple's activity space (Patterson & Farber, 2015). However, one problem of 
these derived geometries is that they tend to have a much higher degree of 
overlapping than statistical unit. As Nelson (2020) puts it “the key role of 
proximity in the organization and structuring of regions is challenged by the 
inside and outside criss-crossing of several flows”. 

In this study, we have approached community detection to identify 
functional neighbourhoods and balance interdependence between ve
nues, even when spatially dispersed, and proximity. 

Below we first discuss the notion of spatially weighted community 
detection, then proceed on our partition selection process, before dis
cussing the resulting communities. 

Spatially weighted community detection: The structure of a network 
is typically measured using modularity, with dense connections between 
vertices within individual communities and sparse connections between 

communities having a higher modularity. A widely used community de
tection algorithm based on modularity maximization is proposed in Clauset, 
Newman, and Moore (2004). It identifies partitions of a network char
acterized by a high modularity value. However, this approach does not take 
into consideration the spatial dimension, which significantly limits the 
analysis of networks representing relations among geographical objects. In 
recent years, some scholars have introduced different methods to include 
space in the community detection process. 

Gao et al. (2013) adopt a hierarchical agglomerative clustering al
gorithm based on a Newman-Girvan modularity metric and an alter
native modularity function incorporating a gravity model to study the 
dynamics of spatial interaction communities. Such modularity measure 
compares the real number of edges within communities with the same 
estimated value under a random model. This approach favours com
munities where the number of edges is higher than expected based on 
the gravity model. While it increases the probability of generating 
disconnected communities, we aim at partitioning interdependent but 
possibly adjacent venues to generate non-overlapping, and therefore 
more usable, geographical units. 

Another method to include the spatial element into community detec
tion is described in (Chen et al., 2015). A distance decay function P 
(d) ∼ d−n is employed to measure the likelihood of a connection between 
two nodes and weight the network accordingly, where d is the Euclidean 
distance between nodes and n would depend on the size and compactness of 
the network. Following this approach the optimal value of n – to maximize 
the modularity of each city's network – has to be selected. 

An extension of (Chen et al., 2015)’s approach to obtain a more 
stable geographic whole is presented in Guo et al. (2018). Such a 
method successfully encloses nodes into proximal communities by im
plementing a spatially contiguity constraint. However, constraining the 
partitioning process risks to hide relevant underlying movement pat
terns between venues located far away. Differently, this work's objec
tive is to balance the need of proximity required to obtain usable 
geographic units with the possibility of relevant, although spatially 
distant, relations. 

To achieve such objective we propose a selection of the optimal 
partitioning by tuning the distance function exponent n – employed to 
weight edges – and the resolution parameter as described below. 

Fig. 2. The frequency of venue category types across all cities.  
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Partition selection process: We create cities' networks using 
Python's NetworkX library (Hagberg, Swart, & S Chult, 2008), with 
nodes representing each venue and edges determined by the existence 
of users flows between them. Edges' weights are therefore calculated as 
follow: w ∼ x ∗ d−n, where x is the number of flows. 

Community detection is implemented using Python's community 
package's best partition method that searches for network partitions by 
maximizing the modularity using the Louvain heuristics. 

To identify the best partitioning for each city's network, we try to 

maximize modularity while minimizing the number of nodes where all 
spatially adjacent venues belong to a different community. We refer to such 
cases as “outliers”. Therefore, we conduct a hyperparameter sweep using 
exponents n ∈ {1.0, 1.5, 2.0, …, 3.5} and the Louvain algorithm's resolution 
parameter, res ∈ {0.5, 1.0, 1.5, …, 6.0}. The resolution determines the time- 
sale of the community detection algorithm, whereby increasing the re
solution produces a larger number of smaller communities (Lambiotte, 
Delvenne, & Barahona, 2008). We identify the outliers for each partition by 
looking at the Triangulated Irregular Network obtained through the 

Fig. 3. Illustration of the geographic data science framework for the functional and contextual analysis of human dynamics. Methods implemented are in diamonds. 
A detailed description of the methods can be found in Section 3. Input and output data are in squares, while the main results are highlighted in bold. The two input 
datasets (Venues and Movements) are detailed in Section 2. Results are discussed in Section 4. 
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Delaunay triangulation algorithm, and select those venues where all spatial 
neighbours belong to a different community. 

For the majority of the cities (London, Paris, New York Seoul, Los 
Angeles, Singapore, Tokyo and Chicago), the highest modularity is 
achieved using either a decay exponent n = 2.0 or n = 2.5, while the 
highest modularity resulted from n = 1.5 for Jakarta 4. In contrast, for 
Istanbul a modularity of 0.99 is achieved for all of the listed exponents 
n ≥ 2.0 (See heatmaps in Appendix C for an overview). We observe that 
as the exponent n increases so does the number of outliers (See Fig. 
D.18 in the Appendix). To identify which partitioning parameters (n 
and res) minimize the number of outliers while maintaining the highest 
possible modularity, we compute an evaluation metric: 

=s z zi mi oi (1)  

In the above equation we compute and subtract the z-scores for the 
modularities m ∈ M and the outliers o ∈ O for each hyperapraeter combi
nation i. The motivation for subtracting the z-score for the number of out
liers is that we want to identify partitions with a low number of outliers. For 
each city we choose the partition that maximizes the metric s. Interestingly, 
we find that for each city an exponent n = 1.5 is optimal as a result of the 
cities having a similar distance decay pattern (see Fig. 4). 

Outcome: The outcome is a set of functional neighbourhoods for 
each of the cities (See Table 1 for details and Fig. 5 for an illustration of 
the neighbourhoods for London and New York). Polygon boundaries are 
created by excluding the outliers and applying an Alpha Shape (Kittel, 
2019) to the associated venue locations within each identified com
munity. The algorithm proposed by Edelsbrunner, Kirkpatrick, and 
Seidel (1983) is used to automatically determine the alpha value that 
enables the tightest polygon that contains all points for each neigh
bourhood. Each functional neighbourhood corresponds to a community 
of nodes, representing a distinctive aggregate Foursquare user activity, 
and bringing together venues with a high degree of interdependence. 

While we capture the outliers – individual venues not located in the 
spatial proximity of their community – we note the existence of clusters 
with few venues spatially separated from the community they belong to. By 
applying alpha shapes on each community we manage to visually identify 
these small clusters of venues, which highlight interesting underlying pat
terns. In London for instance the majority of venues within community 18 
are located in the north east Holloway area. However, we observe that the 
community includes a sub-community of venues – that have not been 
classified as outliers – located at Heathrow Airport (see Sub-Fig. 5a). We 
find that 595 edges with venues belonging to the category “travel” connect 
this set of venues with the venues located around the Holloway area. The 
FCC data therefore captures the transportation links that exist between these 
two locations (e.g., via the Piccadilly line). Meanwhile, for New York we 
observe that a significant number of flows occur between community 14 
and the East River Tunnels (see Sub-Fig. 5b). 

3.2. Contextualizing venues locations 

Venue linkage through user interaction and their geographic location 
drive the spatially differentiated functional neighbourhoods demonstrated 
in the previous section; however, at the local scale, these patterns of use are 
driven by the venue type (e.g. travel, food etc); and other contextual 
measures. Some literature within urban planning and architecture explores 
how the morphology of the built environment (e.g. street geometry) may 
influence activity within places and limit or enhance attraction between 
locations (Ratti, 2004). Previous studies have examined the impact of how 
space syntax variables relating to urban morphology influence the pro
pensity for non-motorised transport modes (Rybarczyk & Wu, 2014) and 
walkable pedestrian spaces (Frank et al., 2009). In our case, the objective 
here is to capture a collection of contextual measures that characterise each 

check-in by aspects of street topology, density, connectedness and beha
vioural patterns. Thus, we contextualise venues locally before aggregation 
within functional neighbourhoods to facilitate a comparison. 

The first stage requires creation of a “catchment” area for each of the 
330 k venues; which are defined as a ten minute walk around each 
Foursquare venue. A polygon delineating the bounding box of all venue 
locations within each city was used to create a NetworkX (Hagberg et al., 
2008) graph from OpenStreetMap (OSM) data using the OSMnx library 
(Boeing, 2017). For each city level graph, a sub graph is induced outwards 
from the venue location. Those nodes and edges captured by each sub graph 
are selected according to a ten minute walking distance (see Fig. 6). As
suming the average person walks a speed of five kilometres per hour, an 
individual covers 800 m in a ten minute walk from each Foursquare venue. 
This is considered in the “Manual for Streets” by the Bradbury et al. (2007) 
as the timescale and distance of a walkable built environment, and so re
presents a sensible catchment reflective of the urban environment im
mediately accessible to the individual from the venue. From these walk 
radii, the convex hull of nodes within the sub graph that are accessible 
within a ten minute walk are then extracted; which are the catchment areas 
used in the subsequent analysis. 

For each catchment area, we define a series of measures that are 
summarized in Table 2. These are derived from both Foursquare ac
tivity to highlight spatio-temporal dynamics of check-in behaviour, and 
a variety of street network measures that expose the morphological 
structure of the catchments. Measures of topology, density and con
nectedness have been shown to reveal insight into common mobility 
and design characteristics that differentiate pedestrian-orientated en
vironments from those which are more auto-orientated. For example, 
‘average circuity’ measures the extent that our catchments deviate from 
the spatial ordering logic of dense (orthogonal) grids to sparse networks 
of circuitous, curving streets that form loops and lollipops (Ewing & 
Cervero, 2010). Unlike street networks with high curvature, a gridiron 
geometry allows a longer line of sight that enables pedestrians to better 
visualize their surroundings and navigate across their environment 
(Hajrasouliha and Yin, 2015). Another measure, ‘average street length’, 
provides a linear approximation of block size (Boeing, 2017). Further 
topology-based characteristics such as ‘street per node average’ mea
sures the mean number of physical streets that emanate from street 
intersections and dead-ends, which proxies the complexity of streets. 

In addition to topology, we derive several density-based measures 
that describe characteristics teristics such as walkability of the urban 
form. ‘Node density’, the number of intersections divided by the area 
covering the network, relays information about the extent of street 
connectivity. More intersections are generally suggestive of an en
vironment more amenable to pedestrian walkability (Frank et al., 
2009), and have been used previously to derive scores that are acces
sible to the general public through online tools like Walkscore. Addi
tional variables we include to describe street network density are the 

Fig. 4. The proportion of flows by distance using 100 m bins.  

4 Previous studies have often found n ∼ 2.0 to be optimal across a range of 
data-sets (Chen et al., 2015). 
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absolute count of nodes (intersections) n and the mean number of in
bound and outbound streets incident to the nodes, k avg. Alongside 
density, we also considered the ‘eigenvector centrality ratio’ which is a 
measure of street network connectedness; which has been correlated to 
footfall volume (Hajrasouliha & Yin, 2015). While OSMnx provide over 
forty measures describing the morphological and topological conditions 
of road networks, the majority of these exhibit significant positive 

correlation, which is undesirable for subsequent analyses like clustering 
due to implicit redundancy inherit in the data (Liu & Yu, 2005). To 
mitigate potential effects introduced by collinearity, we adopt a heur
istic employed in the construction of Work-Place Zone classifications for 
London created by (Singleton & Longley, 2019) on behalf of the Greater 
London Authority, which we take as an example of best practice. 
Variable pairs with a correlation ± 0.8 were investigated, and for each, 
the sum of their correlation with every other variable taken. Thus, for 
each pair, we create a sum of correlations to every other variable in the 
data. Within the pair, the variable that has the highest sum of corre
lations to every other variable is removed from selection. 

Alongside morphology and topology, we explore behavioural practices 
revealed though Foursquare check-ins within each catchment. Every spatial 
choice (or check-in) reflects a conscious decision-making process that can be 
used to infer types of urban activity. These insights are not just revealed 
from the mobility itself, but from meta-data that contextualises these ex
periences within the urban environment. Our variable ‘Percent Same Type’ 
describes the percentage of additional check-ins at venues located within 
the catchment that share the same Foursquare category tag to the check-in 
at the venue used to generate the catchment. This measure communicates 
the degree of heterogeneity in the kinds of check-ins within our catchments, 
with catchments intersected by a large percentage of similar activities ties 
offering more homogeneous consumption, leisure and service spaces. Our 
next variable, ‘venue count’, reflects a raw summation of the number of 
additional check-ins at venues that intersect the catchment of the original 

Table 1 
The frequency of functional neighbourhoods identified for each city, mean (μ) venues per community, alongside the mean (μ) and standard deviation (σ) of the edge 
distance in KM, as well as the Louvain algorithm's resolution parameter and the number of outliers. 

Fig. 5. Functional neighbourhoods within London and New York. Both images contain partitions with interesting outliers that are not located in spatially adjacent 
neighbourhoods (blue). For London we see Heathrow Airport belongs to the same cluster situated around community 18 in the north east. For New York meanwhile 
the East River Tunnels belong to community 14 (Note; venues data for Brooklyn was not provided). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 6. A Catchment showing a ten minute walking radius along a street net
work in Paris built from a venue (red), with other venues within the catchment 
highlighted in yellow. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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venue. This allows us to proxy the popularity of the urban environment 
within the catchment. Finally, we expose temporal dynamics of check-in 
activity by examining distributional splits between morning, midday, 
afternoon, night and overnight. 

Together, our many venue catchments nest into different functional 
neighbourhood definitions, with the tenant mix of these places (alongside 
their built environment characteristics) expressive of the underlying scene a 
neighbourhood projects to residents and passers-by. Venues as amenities are 
windows into the scenes of neighbourhoods which reveal plausible beha
vioural patterns that encode expressions of local traditions, taste and pre
ferences (Silver & Clark, 2016). Ultimately, our approach contextualises 
these functional neighbourhoods by the multi-dimensional properties of 
different activities and experiences offered by each neighbourhood's range 
of venues and built environment characteristics. Across all venues inside 
each neighbourhood, we find that averaging the values for the variables 
identified in Table 2 best reflects the aggregate character and profile of the 
functional neighbourhoods. 

3.3. Understanding and comparing human dynamics in functional 
neighbourhoods 

As Shaw and Sui (2018) put it, “human dynamic research is not just 
about human”. On the contrary, it requires a comprehensive characteriza
tion of the environmental factors that determine certain behavioural pat
terns (Shaw & Sui, 2018). Therefore, to gain an understanding of human 
dynamics in cities, we develop a multidimensional description of the 
functional neighbourhoods, implementing k-means clustering, that accounts 

for human and non-human elements, such as entities in the physical spaces. 
We posit three drivers of functional neighbourhood differentiation that in
clude: diversity, context and mobility. While we outline each driver in detail 
below, we provide a short description for each in Table 3. 

Diversity: The variety of venue categories within a functional 
neighbourhood provides a measure of diversity insofar as it allows 
people to perform different activities within these areas (i.e. dining, 
shopping, working). A widely used measure summarising diversity is 
the Shannon Index, which was first developed in the context of in
formation theory to capture the predictability of certain content to 
appear in a message (Shannon, 1948). However, as implemented here, 
this provided us with an entropy measure characterizing the different 
mix of venue categories within each functional neighbourhood. 

Entropy is therefore calculated according to the Shannon Index as 
follows: 

(2)  

where s is the number of categories, pi is the proportion of venues of 
each category and ln is the natural log. A high value of H corresponds to 
highly entropic functional neighbourhoods, where venues tend to be 
classified by a wider variety of categories (richness), and it is more 
difficult to predict which category a new venues will fall within 
(evenness). 

Context: Check-ins present descriptive measures for contextualizing 
human activity and behavioural patterns. The proportion of check-ins by 
time of day (morning, midday, …) represent spatio-temporal aspects of 

Table 2 
Measures used to compare venues catchment areas using the OSM network. 

Table 3 
Functional neighbourhood differentiation.    

Measure Description  

Diversity Diversity is measured in the categories of venues by computing an entropy score (Shannon Index) 
Context The aggregation (mean) of venues information resulting from the catchment area morphological profiles (topological, density and connectedness metrics) and type 

and average check-ins by time of day (behavioural metrics) (see Table 2) 
Mobility Functional neighbourhood distance decay function 
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human presence within each area, and are averaged over all venues within 
each neighbourhood. The means of the variables (n pois, percent same type, 
ratio eig, streets per node avg., street length total, street length avg., self 
loop proportion, circuity avg., k avg., n, node density km) characterizing 
catchment morphology and people preferences are reduced through the 
application of Principal Component Analysis. PCA is a statistical tool com
monly used to reduce a large number of possibly correlated variables into a 
smaller set of uncorrelated components. A mathematical transformation is 
applied to maintain most of the information in the data accounting for as 
much of the variability as possible. We identify four principal components 
that explain 77% of the variance derived. 

Mobility: The richness of the Foursquare data allows us to further 
elucidate different aspects of people's behaviour: notably spatial interaction. 
For these measures we examine trip length between check-ins to gain in
formation on about human mobility patterns within the functional neigh
bourhoods. We define the aggregate neighbourhood mobility matemathi
cally through a parameterized exponential decay function f(x1…n) in the 
Equation below, which establishes two parameters d and k to approximate 
the proportion of flows by distance (k moderates the decay rate d). Eq. (3) 
takes a vector x1…n of distance bin values, and returns the approximated 
number of flows for each value in xi. We use TensorFlow to obtain the best 
fit for each of the city's empirical observations y1…n, optimizing parameters 
d and k by minimizing the L2 loss between y1…n and f(x1…n). This provides a 
set of exponential decay parameters that estimated likely relative im
pedance between venues locations for given neighbourhoods. 

= × × ×…
…f x max y exp k d( ) (1.0 . ( ))n i i

x n
1

1 (3)  

Comparing Multidimensional Characteristics: The methods pre
sented above result in a set of analytics that describe the functional neigh
bourhoods through features of: venues diversity, context and human mo
bility. To obtain a multidimensional description and compare 
neighbourhoods across all cities we turn to clustering, bringing together 

those areas with similar features. A common method to group multi
dimensional data is k-means algorithm. It clusters data points to minimize 
data variance within a k number of partitions. While this method facilitates 
comparisons between all features across clusters of functional neighbour
hoods, a challenge when implementing k-means clustering is to select an 
appropriate number of clusters. Here we utilize a clustergram, which along 
the x-axis plots a range of potential k values; and along the y-axis a weighted 
mean PCA score. Each line relates to a functional neighbourhood and re
lative score for each iteration of k; and dots represent the cluster average 
PCA scores. An indication of the best fit for k relates to a model where these 
centroids are well separated (See Fig. 7). From this figure, we select four 
clusters as an appropriate k value. Given that k-means is stochastic, we run 
the algorithm 10,000 times on the standardised and scaled data with k = 4, 
extracting the result that had the lowest total within cluster sum of squares; 
i.e., the most compact clusters. After clustering, we append the original data 
back onto the clusters and examine the resulting distributions relative to the 
global averages. 

4. Results and discussion 

Before presenting results from the cluster analysis in Section 4.1, we 
first discuss our findings along each of the three analytical dimensions 
of diversity, context and mobility. Correlation coefficients are calcu
lated to complement interpretation of the results 5. Diversity: The 
Shannon indices reveal that 66% of the functional neighbourhoods 
have entropy scores ranging from moderately low (1.7) to moderately 
high (2.4), while 204 of the functional neighbourhoods are highly en
tropic (> 2.4) and 81 have very low diversity 6. 

The functional neighbourhoods belonging to the latter group are 

Fig. 7. Clustergrams showing how different iterations of k impacted the cluster PCA weighted mean separation.  

5 Pearson’s correlation coefficients can be found in Figure A. 15 in Appendix A 
6 Classes are based on Jenks breaks. 
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found across the ten cities and tend to be smaller and located in per
ipheral areas; in contrast, 50% of the most entropic functional neigh
bourhoods are all placed within the city of Istanbul. To understand 
which characteristics of the functional neighbourhoods may drive di
versity we examine the correlation with the other variables, and with 
the venues count within each functional neighbourhood (see Appendix 
A.15). We found a high (0.4) and statistically significant correlation 
between venues count and diversity which reflects the entropy char
acterizing Istanbul's functional neighbourhoods – which is the sample 
city with the largest number of venues. 

The time and context of human activities: Check-ins are mostly 
made between midday and night within in each city (see Appendix 
B.16). By analyzing check-in temporal distribution we observe a strong 
and significant negative correlation (−0.77) of the midday check-ins 
with those recorded at night. Bearing in mind that the majority of 
check-ins are almost always made at midday, during these two time 
intervals the share of check-ins have a very dissimilar geographic dis
tribution. This suggests a tendency towards specialization within cer
tain neighbourhoods of the city: some areas clearly function to perform 
midday activities with a very low proportion of night check-ins; at the 
same time, areas with higher proportion of night check-ins show a 
lower than average share in midday check-ins (see Fig. 8). We also note 
that there is no direct correlation between check-ins in those time 
frames and diversity in venue categories (see Fig. A.15). This suggests 
that the temporal specialization of functional neighbourhoods is likely 
to be independent from specific category types. This result is in line 
with previous studies, investigating the relation of temporal signatures 
with venues categories, and identifying both types with strong regional 
variability and similar patterns across cities (McKenzie, Janowicz, Gao, 
& Gong, 2015). 

Next, we consider findings from our Principal Component Analysis 
which aims to capture the context of venues within each functional 
neighbourhood. These findings are summarized by biplots in Fig. 9, 
where each black circle identifies the score of functional neighbour
hoods on the first four principal components, while the arrows identify 
the loading (or influence) of each variable in Table 2 on the compo
nents. To aid interpretation, the vector angles in the figure can be used 
to identify correlations between groups of variables. We characterise 
these components as follows:  

• PC1 value is driven up by self-loops and circuity. Self loop designs 
like cul-de-sacs might be more common in suburban residential 
areas that have less predictable, grid-like street geometries. On the 
contrary, high number of intersections (n) and strong network 
connectivity (k avg) – generally characterizing pedestrian-oriented 
areas – have a negative load on PC1 (see Fig. 9a).  

• PC2 positive value corresponds to functional neighbourhoods of 
considerable size, therefore with longer total street length. On the 
other hand, the average number of streets per node loads negatively 
onto the component. These two variables are negatively correlated 
(as suggested by the diverging arrows) and complemented by con
trasting user behaviours. While variegated user preferences (n pois) 
play a role in driving up the value of this component, the check-in 
behaviour of individuals patronising neighbourhoods with negative 
PC2 value reflect less diverse, and more homogeneous consumption 
spaces (percent same type).  

• PC3 and PC4 only explain 23% of the variability in the data and are 
mostly influenced by four variables moving in opposite directions. 
PC3 captures neighbourhoods described by a higher than average 
self loop proportion, which is indicative of street networks that 
consist of many loops and lollipop roads. In the other direction, the 
loading for the streets per node avg. variable indicates a negative 
correlation to the component, which suggests that intersections in 
these neighbourhoods are typically connected by a higher number of 
streets. Following a similar trend, neighbourhoods with a high value 
in PC4 are more characterized by users with preference towards a 

narrow sub-set of venues categories while low values are sig
nificantly driven by high connectivity (ratio eig). 

Mobility: As outlined in Section 3.3, to capture mobility patterns 
we extrapolate two parameters describing the best fit distance decay 
function for each neighbourhood on distance bins with a size of 100 m 
per bin. Parameter d has the most direct impact on the curve's slope, 
while k acts as a moderator. Both parameters determine to what extent 
long distances are travelled between venues within a neighbourhood. A 
steep slope (low d and k) is indicative of neighbourhoods where there is 
a sharp decay in the number flows as the distance between venues in
creases, i.e., we observe a larger number of flows between more prox
imal venue pairs. In contrast, a gradual slope can be observed within 
neighbourhoods where there is a slower decay in the number of flows 
per bin as the distance between venue pairs increases, i.e., people more 
frequently travel longer distances between venues. As expected para
meter d has a negative correlation with the number of venues, allowing 
users to remain local, and thereby travel shorter distances between 
venues. The majority of the neighbourhoods are characterized by a 
rather steep function – 98% of the neighbourhoods have a d  <  0.4 – 
while the few neighbourhoods with a more gradual decay are mostly 
located in Los Angeles and Chicago. Fig. 10 shows two examples of how 
the modelled estimates capture the mobility structure of a neighbour
hood where we see more flows between close venues – Fig. 10a – or 
where entries with longer distances between venues are more frequent -  
Fig. 10b. However, we observe that a few very small neighbourhoods 
located on the cities' outskirts exist, that are not properly described by 
our function (e.g., see Fig. 11). 

4.1. Clustering 

The four clusters resulting from the k-means algorithm combine the 
analytics reported above into a multidimensional description of 
neighbourhood types. We describe the characteristics of each neigh
bourhood cluster below 7.)  

• Cluster 1 (size 169) classifies neighbourhoods mostly located in 
Singapore and Istanbul. This cluster is characterized by having a 
very high entropy score. Furthermore, the proportions of night and 
overnight check-ins - the latter represents the least frequent check-in 
periods within the FCC dataset 8 – are above average. The mobility 
structure of the neighbourhood shows a less than average steepness 
in the distance decay function. These neighbourhoods are char
acterized by cul − de − sac design (high PC1 and PC3). 

• Cluster 2 (size 257) classifies neighbourhoods which have a di
versity score almost on average (the standardize value approaches 
zero), and are popular locations for morning and midday activities. 
They are more likely to be residential areas (high PC1) and favour 
rather fixed behaviours (low PC3 mostly influenced by check-ins in 
venues of the same type). Short distance movements are preferred as 
emerging from a mobility structure well approximated by a sig
nificantly steep distance decay function (both k and d lower than 
average).  

• Cluster 3 (size 129) comprises neighbourhoods with moderately 
high entropy. We also observe a high number of check-ins during 
commuting peak periods: morning and afternoon. PC2 is generally 
positive, suggesting that such neighbourhoods tend to be of a con
siderable size (with longer total street length). Accordingly, this 
cluster's mobility structure has the most gradual distance decay 
slope, therefore users typically travel longer distances between ve
nues compared to the neighbourhoods within the other clusters. 

7 See Fig. 12 for details regarding the standardised averages for each cluster- 
variable pair. 

8 See month-period check-ins visualization in Appendix B. 
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• Cluster 4 (size 312) is characterized by a very low diversity com
bined with high number of afternoon and night check-ins. In these 
neighbourhoods short distance trips between venues are the most 
common, resulting in the most steep distance decay function slope, 
and the area tends to be the most walkable (PC1 and PC2 lower than 
average, demonstrating the high connectivity of the road network). 

Human Dynamics within Global Cities: From the clustering 
analysis we can finally uncover human dynamics emerging from the 
data across the ten cities. The frequency of venues within each of the 
functional neighbourhood clusters is shown in Fig. 13. Cluster 1 clas
sifies almost exclusively neighbourhoods in Singapore and Istanbul, 
where we observe a high entropy score, an active nightlife and a street 
network with long street segments and an high number of self-loops. 
Cluster 2 and 4 neighbourhoods are the most common across the ten 
cities. These clusters split neighbourhoods based on typical activity 
time, until midday the former and from the afternoon onward the latter. 
Despite temporal differences, short distance movements are prevalent 
in both cases, as well as a moderately high connectivity of the street 
network. Half of Los Angeles venues are located in Cluster 3 neigh
bourhoods, followed by Istanbul and Chicago. A remarkable char
acteristic of these areas is a mobility structure that favours long dis
tance movements. Unsurprisingly, a car-centric city as Los Angeles sees 
the higher concentration of venues in such Cluster. 

The utility of these distributions can be illustrated by plotting ar
chetypal functional neighbourhoods across cities. We do this by ex
amining the input scores for each neighbourhood, and selecting those 
that are closest to the average for a particular cluster (see Fig. 14). We 
would expect these functional neighbourhoods to have similar char
acteristics in terms of venues diversity, urban morphology, user check- 
in behaviour and mobility structure. Our approach results in global 
typologies that bring together very different cities. In line with  

Robinson (2006)’s idea of ordinary cities, we aim at highlighting the 
diversity and similarity of human dynamics in a variety of contexts 
worldwide. At the same time, such comparative endeavour does not 
exclude the possibility to investigate differences within each city. 

Previous studies turned to clustering, using different kind of data 
sources, to profile urban areas by the prevalent activity types (Assem 
et al., 2016; Calabrese, Reades, & Ratti, 2009; Gao et al., 2017;  
Lenormand et al., 2015) or to identify land use patterns (D'Andrea, 
Ducange, Loffreno, Marcelloni, & Zaccone, 2018; Grauwin, Sobolevsky, 
Moritz, Godor, & Ratti, 2015). While these works result in typologies 
describing the urban environment from a single perspective - the use of 
space - our profiling approach is designed to combine elements of the 
built environment, such as the street morphology and the diversity in 
venues type, with information about human behaviours. A direct ap
plication of our framework is urban planning. Outcomes of our fra
mework would help urban planners to identify meaningful relations 
between aspects of the built environment – such as its diversity and 
morphological structure – and certain behaviours. While the study of 
the interaction between human activity and the built environment is at 
the core of urban planning practice (Gehl & Svarre, 2013), it is mostly 
based on observation (Gehl & Svarre, 2013), rendering evidence-based 
studies time consuming and focused only on limited areas (Ertio, 2015). 
In line with data intensive approaches to urban planning (Batty, 2013;  
Singleton et al., 2017), our framework capitalizes on the availability of 
data at a global scale to investigate human dynamics, describing the 
way behavioural patterns are combined with characteristics of the built 
environment. While relations across variables are not linear (see Fig. 
A.15 in Appendix A) – with exception of a significant temporal diver
gence when neighbourhoods are more popular – through a clustering 
approach we maintain a multi dimensional neighbourhood character
ization. This enables to identify various declination of similar patterns 
across cities. For example cities such as Singapore or Istanbul have 

Fig. 8. Two exemplary cities sharing similar temporal geography: check-ins are not evenly distributed by day time in the functional neighbourhoods with the most 
striking distinction in check-ins between the classes of midday and night. 
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several neighbourhoods where a high number of night check-ins is 
linked with a walkable environment with high diversity (see Cluster 1); 
in Tokyo or Seoul neighbourhoods characterized by the same temporal 
signature are instead combined with a low diversity and prevalence of 
short-distance movements (see Cluster 4). 

5. Conclusion 

A well rehearsed problem of working with crowdsourced informa
tion relates to its representativeness (Blank & Lutz, 2017; Mart'ı, 
Serrano-Estrada, & Nolasco-Cirugeda, 2019). Some studies (Ballatore & 
De Sabbata, 2018, 2019) explore the geo-demographic context where 
the production process of user generated information takes place and – 
comparing Greater London and Los Angeles – have shown that the way 
information and socio-demographic geographies overlap can vary 
considerably among cities. In light of this, we acknowledge that FCC 

dataset will also be biased towards those venues added by the Four
square user-base, and as such, differences may exist between reality and 
the geographical coverage of the dataset used in this work. Such issues 
might be explored in future work examining the correspondence be
tween Foursquare check-in locations and the universe of other potential 
sites recorded in ancillary points of interest data. 

It is also important to state that the crowdsourced nature of the FCC 
data may impact upon the shape, scale and extent of the derived re
presentations and their characterization. For example, the entropy 
scores are based on categories of venues that are added by the 
Foursquare user-base. This indicates that venues might not reflect 
comprehensively the true variety of businesses within cities. Some ca
tegories of venues – probably those perceived as more interesting by the 
users – or when the user is a business owner looking to advertise their 
activity, e.g., food or drinking establishments – are over-represented (as 
evident from the check-ins per category illustrated in Fig. 2). For ex
ample, the low diversity score found in Paris city center – where a large 
proportion of venues can be categorised as being touristic services such 
as accommodation and food – are likely driven by the users' interests 
within that area. By contrast, Los Angeles follows a different and per
haps more expected pattern where downtown is the most diverse area. 
The limited universe of venues within Foursquare's database also affects 
the check-in counts, which are therefore only possible in their mapped 
venues. In addition, we hypothesize that the number check-ins during 
each period will be influenced by the users' daily routines, i.e., certain 
venue types will be less likely to experience check-ins during what one 
would consider to be typical working hours. Therefore, results on the 
check-in percentage by time of day should be interpreted by taking such 
considerations into account. Furthermore, while the FCC dataset does 
not allow us to differentiate check-ins that occur during the typical 
working week (Monday – Friday) from the weekend, we consider that 
obtaining this additional level of granularity could open up interesting 
avenues for future research. 

Catchment areas – used to characterise the venue's context – are 
computed based on the Open Street Map (OSM) road network which is 
also populated by user generated data. OSM data quality has been as
sessed in the UK (Haklay, 2010) and France (Girres & Touya, 2010) 
through a comparison framework to evaluate such data against national 
reference geographic databases. Results show that while the positional 
accuracy of the road network is fairly adequate, disadvantaged and 
rural areas have weaker coverage. 

Although we recognize that detecting biases in crowdsourced data is 
still a major challenge to the application of geographic data science 
methods (Mart'ı et al., 2019), it must be acknowledged that the un
precedented volume, velocity and variety (De Mauro, Greco, & 
Grimaldi, 2015) of information afforded by big data open up novel 
opportunities for obtaining insights about urban contexts. Evaluations 
of crowdsourced geographic information, along with mobile phone 
data, have provided knowledge on a variety of urban facets, e.g., 
highlighting issues of intra-neighbourhood segregation, mobility and 
inequality (Shelton, Poorthuis, & Zook, 2015), automatically suggesting 
routes that are both short and emotionally pleasant (Quercia, 
Schifanella, & Aiello, 2014), and providing insights into the physical 
aspects of cities and the spatial distribution of urban functions (Arribas- 
Bel, Kourtit, Nijkamp, & Steenbruggen, 2015). 

As Miller and Goodchild (2015) put it, the widening use of big data 
in geography should be interpreted as evolutionary, rather than re
volutionary, to geo-spatial research, complementing and augmenting 
existing data sources and methods. In particular, crowdsourced geo- 
spatial data offers the researcher a glimpse into the intangible aspects of 
urban life, such as people's spatial behaviours and preferences (Sui & 
Goodchild, 2011). These domains are well beyond the scope of official 
geographic data provided by institutional agencies, and have been 
traditionally captured through observational methods (Gehl & Svarre, 
2013) at higher cost, slower speed and with much more limited cov
erage (Quercia, Aiello, Schifanella, & Davies, 2015). 

Fig. 9. Variables contributing to PC1 & PC2 (a) and PC3 & PC4 (b).  
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Fig. 10. Two modelled line examples for Chicago.  

Fig. 11. Two examples of neighbourhoods with a small number of venues and flows in Singapore and Istanbul.  

Fig. 12. Standardised averages for each cluster-variable pair.  
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Furthermore, platform users contribute to the data collection vo
luntarily which, according to the Hawthorne effect, might be an ad
vantage compared to traditional methods since the studied population 
is unaware of being observed (Mart'ı et al., 2019). 

In addition, the increasing use of such media on a global scale al
lows scholars and analysts to employ internationally integrated data. 
This facilitates comparisons across cities around the world, overcoming 
existing gaps in the availability and interoperability of institutional 
open geographic data. 

Results of our framework can be input for the development of urban 

theories and, consequently, planning strategies in a variety of contexts. We 
capitalize on the human content provided by this data, such as people be
haviours in terms of temporal movements and venues check-ins, bringing 
about a human-centric approach to geographic data science methods. 

First, we generate geometries - functional neighbourhoods - en
tailing venues with strong interdependence over geographical space. 
Differently from administrative units, these are areas emerging from 
human interaction with the built environment in their activity space 
and as such they provide scholars and planners with the spatial forms 
underlying human dynamics. 

Fig. 13. The % of venues within functional neighbourhood clusters by city.  

Fig. 14. Archetypal functional neighbourhoods from Cluster 4. The neighbourhoods are characterized by a low entropy score, are very dense areas with a highly 
connected street network within which people predominately move short distances between venues, and are typically frequented at night. 
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Second, a set of urban analytics are developed to describe the main 
features of functional neighbourhoods. We select variables to mix be
havioural patterns and characteristics of the built environment into a 
multidimensional characterization. 

Third, functional neighbourhoods are clustered and profiled. This 
final output is well suited towards identifying and describing similar 
neighbourhoods between and within cities. 

Outputs of our framework can significantly address further in
vestigation into areas of specific interest. In particular, by centering the 
unique mix of methods that we propose on the interaction between 
humans and the built environment, our framework can be a valuable 
tool to support urban planning strategies in different contexts. 

There are numerous avenues for future research. As we mention in  
Section 2, the data have been aggregated on a month-year and period 
basis, determined by the date and time when users arrive at the desti
nation venue. We are therefore unable to establish if a direct path was 
taken by users between venue1 and venue2, thereby adding noise. 
However, more granular time stamps would enable the exploration of 
potential modes of transit linking venue sequences. 

In our current evaluation we discover functional neighbourhoods 
for each city using all the provided flows. However, as mentioned in  
Section 2, the FCC dataset includes movement data for venue pairs 
aggregated for month-year and period of the day. This information 
opens up interesting opportunities for future research in this area. For 
instance, applying our framework to individual periods of the day could 
enable a comparison of how functional neighbourhoods change over 

time. Utilizing the month-year column meanwhile may enable a long
itudinal study. We leave such considerations to future work. 

Additional variables to characterise and profile the neighbourhoods can 
be included, i.e. pollution and congestion data. At the same time new me
trics to estimate to what extent crowdsourced data such as Foursquare is 
representative of the reality can be developed to ensure more robust results. 

Furthermore, in its current state our distance decay function is best 
suited towards approximating monotonically decaying distance bin 
flow counts. However, as we observe in Fig. 11, the number of entries 
per bin is not always monotonically decaying, raising the question 
whether a more suitable parameterized approach can be found. 

We also note that the euclidean distance metric used to identify parti
tions offers a simplification of true physical distance, as individuals rarely 
travel from point A to point B in a straight line. Describing distance in this 
way likely underestimates true physical proximity, potentially decreasing 
the level of confidence that can be ascribed to the detected communities 
which are contingent on spatially-weighted network edges. We leave the 
computing of these distances using routing algorithms for future work. 

This work has outlined how social media data such as Foursquare can be 
utilized to provide insight into the structure and function of cities. Through 
our Geographic Data Science workflow we create a framework for identi
fication and description of functional neighbourhoods across global con
texts, linking a range of measures ascribed down to the local level. The 
framework is portable to other geographic contexts where interaction data 
are available to bind different localities into functional agglomerations, and 
provide insight into their contextual and human dynamics.   

Appendix A. Correlation coefficients 

Fig. A.15. Pearson's correlation coefficients among variables characterizing the functional neighbourhoods. All coefficients which are not significant at p  <  .01 are 
left blank. 

A. Calafiore, et al.   Computers, Environment and Urban Systems 85 (2021) 101539

15



Appendix B. Month-period check-ins visualization  

Fig. B.16. Heatmaps illustrating the number of check-ins for each month-period combination. 
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Appendix C. Modularity visualization 

Fig. C.17. Modularity scores for each exponent decay n and resolution value combination.  
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Appendix D. Outliers 

Fig. D.18. Outliers for each exponent decay n and resolution value combination.  
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Appendix E. Modularity-outlier metric visualization 

Fig. E.19. Heatmaps illustrating the Modularity-Outlier Metric for each city.  
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