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A B S T R A C T   

The increased availability of high-resolution multispectral imagery captured by remote sensing platforms pro
vides new opportunities for the characterisation and differentiation of urban context. The discovery of gener
alized latent representations from such data are however under researched within the social sciences. As such, 
this paper exploits advances in machine learning to implement a new method of capturing measures of urban 
context from multispectral satellite imagery at a very small area level through the application of a convolutional 
autoencoder (CAE). The utility of outputs from the CAE is enhanced through the application of spatial weighting, 
and the smoothed outputs are then summarised using cluster analysis to generate a typology comprising seven 
groups describing salient patterns of differentiated urban context. The limits of the technique are discussed with 
reference to the resolution of the satellite data utilised within the study and the interaction between the geog
raphy of the input data and the learned structure. The method is implemented within the context of Great Britain, 
however, is applicable to any location where similar high resolution multispectral imagery are available.   

1. Introduction 

The research presented in this paper develops a new national 
multidimensional and generalized measure of urban spatial structure. 
The derivation of such contextual measures have a rich academic his
tory, and are used for a variety of applications related to the spatial 
targeting of policy or other interventions. In this example we focus on 
the built environment through a methodologically innovative analysis of 
high-resolution satellite derived imagery, although as discussed later, 
the output measures from this work also have the potential to enhance 
more general-purpose geodemographic classifications through the 
integration of additional population and socioeconomic data. The key 
innovation of this work is therefore to introduce and implement an 
entirely new way in which the built environment context of small areas 
can be classified from high-resolution satellite data using a convolu
tional neural network. Our new measure of “context” is made available 
at a very high spatial resolution for a case study covering the entire 
extent of Great Britain. The input measures and output classification are 
all placed within the public domain, and available from: https 
://dataverse.harvard.edu/dataverse/sat_cnn and for reproducibility, 
the code can also be found here: https://github.com/GDSL-UL/sat_cnn. 

The paper is organised as follows: we first describe the context for 

this work, then those data used in the study as well as the many and 
varied challenges encountered in its ingestion and cleaning; next, we 
provide an overview of the specification and implementation of our 
model; then, after running the model we present a case study application 
illustrating how the outputs might be operationalised to derive insight 
about urban context, exploring this representation in relation to internal 
and external validation metrics. We close with some concluding remarks 
about the potential of our framework to advance our understanding of 
the contexts of cities and their spatial structure. 

1.1. Framing the challenges and opportunities for the measurement of 
local urban context 

Those ways in which the outcomes of human behaviour are influ
enced by the context of those places in which they live, interact and 
work are fundamental to our understanding of urban systems. The 
quantitative measurement of urban spatial structure has a legacy of 
development within Urban Geography and Planning (Batty, 2013), both 
as a normative tool in practice or as an epistemological construct aiming 
to advance knowledge about how cities work. There are multiple ways in 
which researchers have attempted to represent context; summarised 
here through three distinctive computational approaches (Fig. 1 A-C): 
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those based on geometry which ascribe morphometric attributes derived 
from representations of the built environment, those which are based on 
the summary of tabular measures of built or social attributes collated for 
small area geography (often called geodemographics); and those derived 
from uniform gridded data such as remotely sensed imagery. Although 
the approaches vary in their theoretical rationale and implementation, 
they typically share common goals to better derive a representation of 
the complex organisational structure of and beyond urban areas. This 
includes the measurement of salient characteristics, the derivation of 
insight about specific aspects of latent structure that are not directly 
observable, and the relationship between such observations to function 
and evolutional form. 

In a general sense, morphometric analysis (Fig. 1A) aims to provide a 
lexicon of urban structure; derived through various approaches to metric 
derivation that typically examine aspects of size, shape and inter
connectivity of digitised representations of urban features (Hijazi et al., 
2016). Such measures are often ascribed at the scale of the features 
being assessed; for example, connectivity scores for street geometry 
(Araldi & Fusco, 2019; Boeing, 2018) or the spatial arrangement of 
buildings (Vanderhaegen & Canters, 2017); although may also be 
complied for ancillary derived features or summarised through aggre
gate units (Fleischmann, Feliciotti, Romice, & Porta, 2021). Although 
not universally the case (Araldi & Fusco, 2019), such measures tend not 
to be combined, and are mostly presented as univariate indicators. 

By contrast, tabular approaches to the summary of only urban 
structure are reasonably rare (Fig. 1 B) and tend to apply either 

combinatorial indexes or cluster analysis to a set of small area stan
dardized measures and may conflate both social and built characteristics 
into multidimensional scores or categories. Such approaches overlap 
with morphometric analysis when derived measures are considered 
within zonal geography, although typically draw on a wider range of 
inputs beyond those derived from geometric properties of the built 
environment. Data sources for such studies typically include attributes 
derived from Census, surveys, administrative or commercial data, and as 
a technique where typological representations are created, are 
commonly referred to as geodemographic classification (Webber & 
Burrows, 2018). However, divergent from the work presented here, such 
classifications typically describe both the social and built characteristics 
of small areas (Singleton, Alexiou, & Savani, 2020; Singleton & Spiel
man, 2014; Spielman & Singleton, 2015b), and there are much more 
limited examples of applying geodemographic classification techniques 
to purely built environment data (Alexiou, Singleton, & Longley, 2016). 

Data derived from remotely sensed images such as satellites and 
other airborne sensors also have a legacy of use within this domain 
through the development of land cover / land use (LCLU) classifications 
(Fig. 1 C). LCLU classification typically considers the spectral ‘signa
tures’ of remotely sensed images, which are generated as a result of how 
different surfaces reflect distinctive wavelengths of light. Such classifi
cations are often compiled at a pixel level and may also include mea
sures that relate to the surrounding values within a moving window 
around each pixel. In many cases the classes are often predefined before 
the classification is carried out and are usually discrete, but can also be 

Fig. 1. Different approaches to the measurement of urban context: showing the urban area of Liverpool, North West UK (Morton, Marston, O’Neil & Rowland 
(2020)). 
Data 2021 © Space Syntax Ltd. 
Contains OS data © Crown copyright and database right 2021. 
Historic England 2015. 
Office for National Statistics licensed under the Open Government Licence v.3.0. 
© UKCEH 2017. 

Fig. 1. (continued). 
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fuzzy. Alternative approaches classify objects from delineated areas of 
imagery (Helber, Bischke, Dengel, & Borth, 2018; Shendryk, Rist, 
Ticehurst, & Thorburn, 2019). In some studies, vector data such as built 
environment features are integrated into the models in their creation or 
as post facto processing. LCLU methods are also differentiated from 
object detection methods that attempt to extract specific geographic 
features (e.g buildings, roads etc) from high resolution imagery 
(Blaschke, 2010). 

With the overarching aim of this paper being to derive a measure of 
context of where people live, this is divergent from the majority of more 
traditionally orientated LCLU studies. However, there are a growing 
number of applications from within this literature that implement or 

evaluate innovative machine learning methodologies when applied to 
remotely sensed imagery, notably using convolutional neural networks 
and other related techniques (Cheng, Han, & Lu, 2017). Such methods 
frame our work, and have been shown to improve land cover classifi
cation, and particularly in case studies where high-resolution spatial 
imagery are available (Chen, Ming, & Lv, 2019a, 2019b; Gaetano, Ienco, 
Ose, & Cresson, 2018; Liao, Cao, Wang, & Xu, 2022; Zhang et al., 2018). 
Although a number of innovative techniques have been proposed to 
mitigate such issues (Fan, Feng, Wang, Yan, & Zhang, 2020), there 
remain common challenges in many studies when supervised methods 
are being applied, as these rely upon labelled data (Bhosle & Musande, 
2019; Feng et al., 2019; Heryadi, Miranda, Heryadi, & Miranda, 2019; 

Fig. 2. True Colour Image comparisons. 
Modified Copernicus Sentinel data 2021. 

Fig. 3. The frequency of images by date that were extracted for each postcode.  
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Kareem et al., 2021). Similar issues care found within this paper, both as 
a result of the data used, but also by design as our theoretical framework 
assumes no prior knowledge about the geography of context. A more 
related literature aligned to the work presented here is semantic seg
mentation (Balarabe & Jordanov, 2021; Nogueira, Penatti, & dos Santos, 
2017; Weng, Mao, Lin, & Guo, 2017) which involves the partitioning of 
an image into regions / objects sharing similarity where models can be 
applied to extract semantic meaning (Kotaridis & Lazaridou, 2021). As 
will be described in the next section, a key difference here is that our 
objects are kept to a uniform size; and there are no prior labels seman
tically differentiating content, with this structure being learnt and then 
inferred through the application of our specified method. 

The approaches briefly presented above all emerged from very 
different histories and disciplinary backgrounds, however share com
monality in their ambitions to translate rich spatial data into insight 

about the structure of the built or natural environment. Within Great 
Britain, morphometric and tabular approaches have typically offered 
greater detail in urban over rural areas, as highlighted in Fig. 1. 
Morphometric approaches are more prevalently derived for specific 
policy / planning applications located within urban areas (Dibble et al., 
2017; Hillier, Leaman, Stansall, & Bedford, 2016; Salvadori, Badas, di 
Bernardino, Querzoli, & Ferrari, 2021; Venerandi, Zanella, Romice, 
Dibble, & Porta, 2016), whereas tabular geodemographic approaches 
are often derived for a national extent, and in addition to capturing some 
built environment characteristics, will often aim to describe a brevity of 
population characteristics or behaviours (Gale, Singleton, Bates, & 
Longley, 2016). Perhaps unsurprisingly given the focus on the natural 
environment, the presented LCLU (Fig. 1 C) only differentiates between 
urban and suburban areas, with much greater detail provided for non- 
urban areas. Elsewhere, there are more urban focused applications of 

Fig. 4. Summary of the Autoencoder Architecture (Source: Authors Own).  

Fig. 5. A Clustergram showing the potential suitability of k = 2 to 19 solutions.  
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LCLU; for example, the European Environment Agency Urban Atlas1, 
which delineates built up urban areas into multiple categories of density, 
industrial and other aspects of supporting infrastructure. 

For many normative applications of contextual measures, and 

particularly in tabular approaches, these are concerned with the char
acterisation of different types of “neighbourhood”, which although 
might be argued as varying in their definition / ontology (Forrest & 
Kearns, 2001; Galster, 2001), they share an ambition to capture 
important effects on behaviours or outcomes that extend beyond those 
which are observable at the individual scale (Galster, 2013; Sampson, 
2019; van Ham, Manley, Bailey, Simpson, & Maclennan, 2012). 

Fig. 6. Pilot cluster analysis with the raw and smoothed data inputs. 
High Resolution (25 cm) Vertical Aerial Imagery [JPG geospatial data], Scale 1:500, Tiles:sj4289, sj4288, sj4189, sj4188, Updated: 29 October 2018, Getmapping, 
Using: EDINA Aerial Digimap Service, <https://digimap.edina.ac.uk>, Downloaded: 2021-05-28 09:35:02.49. 
Contains OS data © Crown copyright and database right 2021. 
Contains GeoPlace data © Local Government Information House Limited copyright and database right 2021. 
Source: Office for National Statistics licensed under the Open Government Licence v.3.0. 

1 https://land.copernicus.eu/local/urban-atlas/urban-atlas-2018 
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Although conceptually this might be argued as suboptimal (Wei, Rey, & 
Knaap, 2021), for analytic simplicity or necessity many urban applica
tions utilise zonal geographies created for statistical, political or 
administrative purposes. Such shorthands for delineated “neighbour
hood” zones lend their characterisation through tabular forms of data 
where it may be possible to compile measures directly for the chosen 
geographic units. Comparatively, although LCLU can also be derived for 
discrete zonal geography or land parcels; this is less common as their 
inputs are primarily sourced from continuous fields (raster images), and 
indeed, such representations also remain a common output format for 
these measures. For morphometric measures, these tend to be ascribed 
to either discrete built environment objects or their atomistic compo
nents, and again do not easily translate into zonal geographies. 

Morphometric, tabular and LCLU approaches bring complementary 
insight to our understanding of urban contexts that hitherto remain 
predominantly decoupled given their different disciplinary origins and 
divergent uses. We position our new framework as a supplement rather 
replacement of existing approaches, and as a new theoretical lens 
through which local contextual differentiation can be measured more 
flexibly alongside a nuanced definition of “neighbourhood” geography. 
As discussed earlier, the use of remotely sensed data for LCLU is well 
established, and their use in urban applications more generally is not 
new (Imhoff, Lawrence, Stutzer, & Elvidge, 1997; Mesev, Longley, Batty, 
& Xie, 1995). However, we make the case that applications of remotely 
sensed data are likely to gain increased importance and utility in urban 
settings: firstly given the proliferation of newer and higher resolution 
data that are being generated as a result of advancing space technology 
(Esch et al., 2020; Zhu et al., 2019), and secondly as a result of advances 
in the fields of computer vision and machine learning. However, 

realising this potential requires notable methodological advancement 
(Ibrahim, Haworth, & Cheng, 2020; Singleton & Arribas-Bel, 2019) 
given that the vast amount of information that is potentially uncoverable 
within such data are stored in highly unstructured forms, provided as 
images, colour patterns, and additional bands recorded by other on- 
device sensors. We would argue that potential value contained within 
such data are also increasing given that they are framed by an era when 
the funding of many traditional large-scale data collection exercises such 
as the census are under fiscal constraint; and when there are growing 
methodological challenges in large surveys such as declining response 
rates (Spielman & Singleton, 2015a). 

Much of the recent work in urban geography / planning exploiting 
imagery data has tended to focus on single issues related to measures of 
urbanization, economic activity or population, with more recent work 
beginning to model their evolution over time (Bennett & Smith, 2017). 
Such studies are typically implemented to either derive global 
comparative measures (Arribas-Bel, Patino, & Duque, 2017; Lloyd et al., 
2019; Pokhriyal & Jacques, 2017; Proville, Zavala-Araiza, & Wagner, 
2017); or are applied within low- and middle-income countries (LMICs) 
where other sources of granular data may be less prevalent (Jean et al., 
2016; Mahabir, Croitoru, Crooks, Agouris, & Stefanidis, 2018; Steele 
et al., 2017; Wurm & Taubenböck, 2018). There are emerging but more 
limited examples of the application of remotely sensed data to create 
more detailed measures of the socio-economic landscape (Weng, Quat
trochi, & Gamba, 2018). 

Fig. 7. Within Sum of Squares aggregated by Cluster; with the frequency of postcodes in brackets.  
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2. Methodology 

2.1. Data - measuring local spatial structure from space 

The overarching objective of this paper was to present a new method 
of measuring local context that could be flexibly applied within different 
settings to meet variegated definitions of neighbourhood. As such, the 
aim here was not to ascribe a measure of context with universal coverage 
for all land area within the UK, as might be the case in LULC, but rather 
to focus on those localities where people live, describing these areas in 
terms of their varying context. Within Great Britain, unit postcodes 
provide a useful base geography upon which to build such a measure 
which on average identify around 13 residential addresses; although 
postcodes do capture both residential and business addresses, and also 
are not always mutually exclusive. In Great Britain there are 1,710,715 
current postcodes which broadly follow a spatial distribution aligned 
with residential density; so more are found within closer proximity in 
urban versus rural areas. A database of georeferenced postcodes was 
supplied by the Office for National Statistics under an open licence.2 

The second main source of data are high resolution multi spectral 

satellite imagery. The highest resolution open satellite data available 
with coverage for Great Britain are supplied by the European Space 
Agency (ESA) and derived from Copernicus Sentinel 2. ESA publish the 
data in 12 spectral bands, at 60 m, 20 m and 10 m resolution, as well as a 
true colour image (TCI) generated from the visible red, green and blue 
(RGB) bands. For the purpose of this exercise, we only used the 10 m 
resolution bands for RGB and Near Infrared; utilising the RGB bands to 
create a bespoke TCI. We opted to build our own TCI as the ESA com
posite observed a clip range of values at the 0.1% and 99.9% percentiles 
which resulted in loss of detail and clarity at the lower and higher ends 
of the spectral range. Although this issue affects only 1 in 1000 pixels, 
these appeared disproportionately represented on both dark and light 
roofs of buildings resulting in the edges of these features becoming fuzzy 
(Fig. 2). To avoid this potential information loss a bespoke TCI was 
generated where clipping at various percentiles were evaluated, with the 
final choice being to not clip at the lower end since this comprised very 
few observations. We then apply white balancing at four standard de
viations from median, scaled to the range of 0 to 1 where values greater 
than one were considered outliers. There were additional benefits to this 
re-processing. For example, because ESA clipping operations are applied 
on a tile-by-tile basis, this resulted in different levels of brightness across 
adjacent TCI tiles; and as such, our re-processing which covered the 
whole of the GB extent returned a more consistent level of brightness 
across all images; with such normalisation being acutely important for 
nationally comparative purposes. An example of the ESA TCI and our re- 
processed image is shown in Fig. 2 A and B; with the latter offering 
greater clarity. 

As discussed, the target geography for the output of this work was a 
measure derived for each unit postcode, and as such, a lookup was 
required between these locations and the ESA Copernicus Zone corre
sponding to the image tile extent. ESA supply a set of vector multi- 
polygons that were used in a large point in polygon operation relative 
to all postcode locations. These are provided in WGS84 so were con
verted to UTM to avoid spherical distortion (Karney, 2011) and loaded 
into a spatial database. 

The analytical framework discussed in the next section was imple
mented with TensorFlow, which is an Open Source library for the 
development and training of machine learning models. We utilised this 
within a GPU (NVIDIA RTX8000) environment to enable more rapid 
(and feasible) computation. Input to TensorFlow is called a Tensorset, 
which is stored in GPU memory; and in this case comprised a separate 
tensor (multidimensional array) for each postcode composed of four 
dimensions (Near Infra Red–NIR, Red, Green, Blue). Sentinel 2 data 
were matched to each postcode using our database of ESA manifest ta
bles against a date range and a cloud free filter. The optimal solution for 
temporal consistency would be full coverage of Great Britain for single 
cloud free day, however this is not realistic for all locations. As such, we 
sought images between 1 April 2020 to 30 September 2020 and aimed to 
extract cloud free images for each postcode within this date range. A 
distribution of these images for all live postcodes are shown in Fig. 3; 
spanning the period 7th April 2020 through to 21st September 2020. 
From the available swaths, only those where the ESA metadata 
described 10% or less cloud cover filter were considered; which is a 
score ascribed for the entire swath. 

Given that the source imagery was at 10 m resolution, a 16 × 16 
(160 m × 160 m) square buffer was created for each postcode, thus 
forming each tensor. A tensor requires a square and symmetric matrix so 
it was not possible to utilise other buffer shapes (e.g. circle) or non- 
uniform geometry. This specific size was chosen as the closest to the 
median unit postcode area for Great Britain, which was derived by 
Voronoi polygons. As such, when we refer to the “context” of a postcode, 
empirically this is defined as a square buffer of 160 m around each 
postcode centroid. At a conceptual level, the scale at which context is 
experienced might be argued as better aligned to a street geography 
rather than a buffer zone. However, the utility of considering a wider 
area brings benefit in that this captures factors beyond a postcode 

Fig. 8. Within Sum of Squares aggregated by Postcode District. 
Postal Boundaries © GeoLytix copyright and database right 2012. 
Contains Ordnance Survey data © Crown copyright and database right 2012. 
Contains Royal Mail data © Royal Mail copyright and database right 2012. 
Contains National Statistics data © Crown copyright and database right 2012. 

2 https://geoportal.statistics.gov.uk/datasets/ons-postcode-directory-may 
-2021 
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centroid that may also contribute to context. For example, a postcode 
surrounded by greenspace may be perceived very differently to one that 
is characterised by noisy roads or an industrial area. From the available 

swaths, buffer images that were closest to the swath pixel level aggre
gate median were extracted; alongside additional checks for damaged 
pixels. 

2.2. Model design and training 

The overarching aim of this analysis was to create a set of repre
sentative measures that describe the characteristics of the area sur
rounding every GB postcode as recorded within the associated input 
tensor set (multiple tensors) from the satellite image. To this end, we 
applied a Convolutional Neural Network (CNN) to derive a set of 
discriminative features that retain the information contained in the 
satellite data but effectively compress its dimensionality. Convolutional 
Neural Networks, the workhorse of deep learning (Lecun, Bengio, & 
Hinton, 2015), are a family of machine learning techniques that has seen 
wide use in a range of recent urban spatial problems related to the 
identification of features or the characterisation of different types of 
imagery (Ibrahim et al., 2020). Applications to imagery data are quite 
diffuse but include: the characterisation of street imagery (Comber, 
Arribas-Bel, Singleton, & Dolega, 2020; Law, Seresinhe, Shen, & 
Gutierrez-Roig, 2020; Liu, Silva, Wu, & Wang, 2017; Middel, Lukasczyk, 
Zakrzewski, Arnold, & Maciejewski, 2019), measuring the evolution of 
urban features (Saeedimoghaddam & Stepinski, 2020), regional move
ment (Yang & Gidófalvi, 2020), and detectingvarious kinds of urban 
objects (Alizadeh Kharazi & Behzadan, 2021; Branson et al., 2018; 
Campbell, Both, Sun, & Chayn)., 2019; Kang, Körner, Wang, 

Fig. 9. The Liverpool City Region contextual Postcode geography.  

Table 1 
Ancillary data used to describe the clusters.  

Measure Geography Source Year/ 
Month 

Limited 
Companies 
Postcode Count 

Postcode Valuation Office Agency; 
Companies House Register 

2021/ 
02 

Council Tax Bands 
# 

LSOA Valuation Office Agency; Housing 
Stock Statistics 

2019/ 
09 

Property Type # LSOA Valuation Office Agency; Housing 
Stock Statistics 

2019/ 
09 

Year Built Bands # LSOA Valuation Office Agency; Housing 
Stock Statistics 

2019/ 
09 

Postcode 
Population 

Postcode Office for National Statistics 
/Statistics Scotland; 2011 Census 

2011/ 
03 

Postcode NDVI Postcode European Space Agency; Sentinel 2 2021/ 
02 

House Type # Postcode Ministry of Housing, Communities 
& Local Government; Energy 
Performance Certificate 

2020/ 
21 

Road Features Network OS Open Roads 2020/ 
21 

Notes: # - These data were only available in England and Wales. 
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Taubenböck, & Zhu, 2018; Palmer et al., 2021; Zhao, Pang, & Wang, 
2018). 

Unlike many applications of CNNs, our approach here is unsuper
vised. This means that instead of training a network to predict a set of 
predefined labels or values, we use it to parse through the set of images 
and derive measures that aim to represent their latent structure. A 
convolutional autoencoder (CAE) is a type of CNN that performs this 
process. The CAE architecture is composed of two stages. The first is 
encoding, where the underlying structure of an image is learnt and stored 
in a latent vector of lower dimensionality to the original image. Once the 
latent representation is learnt, a second phase, the decoding, aims to 
reconstruct an image with similar characteristics to the input from the 

latent vector. For our application, the input tensor for each postcode 
comprised 16x16x4 (1024) pixel values which correspond to the 160 m 
(10 m resolution) square buffer around each postcode for the red, green, 
blue and near infrared bands of the satellite data. 

For the later purpose of creating a classification, we only required the 
latent representation of the data: this encoding phase is summarised in 
the left part of Fig. 4 where the dimensionality reduction at each 
convolution is presented (fe). However, as validation of this encoding, 
the decoding phase (fd) was also implemented under the assumption that 
more effective encoding would return more accurate decoding. As such, 
when building our model, 20% of the original source images were held 
back as a validation sample, and the model converged to 88.74% 

Fig. 10. Heatmap of index scores describing the clusters.  
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validation accuracy after 100 training epochs. The decoded portion of 
the model was then discarded, and the output of the encoding phase of 
the CAE was retained. This comprised a set of learned latent represen
tations of dimensions 8x8x1 for each area surrounding a postcode. We 
then use these as the input dataset for the next phase of the analysis with 
a record for every postcode and 64 separate attributes describing the 
context of their surrounding 160 m area. 

Our hypothesis in this work was that the CAE would derive a useful 
characterisation of salient attributes of the context for each postcode; 
akin to how a principle component analysis (PCA) might be applied in 
the analysis of tabular data(Liu, Singleton, & Arribas-Bel, 2019) but 
relaxing the linearity of PCA to allow for complex, non-linear repre
sentations of the input images. In practical terms, each of the 64 di
mensions output from this process equated to an abstract aspect of the 
learned structure. In isolation, these may form a useful input to pre
dictive models aligned to some specific outcome. In our context how
ever, given their very detailed nature, we require further summary to 
derive a useful aggregate indicator of comparative and generalisable 
urban context. 

3. Results: representing salient context through cluster analysis 

As introduced earlier, tabular approaches to the representation of 
urban context will often take a set of input measures for different social 
or built environment characteristics and apply a clustering algorithm to 
derive discrete labels describing salient characteristics. Following pre
vious work in the creation of geodemographic and built environment 
classifications (Alexiou et al., 2016; Gale et al., 2016; Spielman & 
Singleton, 2015b), we applied a k-means clustering algorithm to the 
latent vectors produced by the CAE. K-means searched the feature space 
of its input data (1,710,715 × 64) to find those postcodes sharing similar 
characteristics. K-means was initiated using k random locations (seeds), 
to which all postcodes were matched to their nearest seed. Cluster mean 
values across the input attributes were then calculated and postcodes 
reassigned to their nearest cluster centroid. This process was repeated 
until no further assignments were made. Because k-means is initiated 
with a random seed, the results are stochastic; and in order to obtain an 
optimal fit, each k-means model was run 10,000 times, retaining the 
model that best fit the data, as measured by a total within sum of squares 
statistic. Despite the relative computational efficiency of k-means, the 
very high dimensionality of this problem, alongside the requirement for 
multiple runs required parallel computation, and as such was also 
completed within a GPU framework. 

A general challenge for k-means is assigning an appropriate number 
of clusters (k) that represent yet uncovered structure contained within 
the input data, under the assumption that there is no theoretical rational 
for selecting a particular value of k. To explore a suitable value for k we 
implemented a Clustergram (Schonlau, 2002). This presents different 
potential k values by plotting the weighted mean of the first component 
of a principal component analysis (PCA) for each individual cluster. 
Given that the first component of a PCA provides measures the majority 
of variance contained within the input data, then separation of the 
clusters along the Y axis gives an indicatior of their difference. Such 
charts also highlight how clusters are spit by moving to different values 
of k; with the width of the lines representing the overall size of the 
cluster for each solution. A Clustergram is shown in Fig. 5 and was 
created to explore potential values of k in the range 2 to 19. From this 
analysis a k = 7 solution was chosen which demonstrated clear sepa
ration between the clusters. 

A k = 7 model was then run for 1000 iterations of k means to explore 
the saliency of this solution. After mapping the clusters, it became 
apparent how sensitive the CAE model was at picking up differences 
between the input images. On balance this was sub optimal both in terms 
of the utility of the classification created, but also as a representation of 
how context might be experienced. An example of the issue is illustrated 
in Fig. 6 for an area of South Liverpool, UK, which plots a set of resi
dential addresses (unique property reference numbers: UPRN) ascribed 
with a colour corresponding to their associated postcode cluster (mul
tiple UPRN per postcode). Many of the clusters are not spatially 
contiguous; and although UPRN are shown here to better delineate 
street morphology; the input postcodes and their associated buffers are 
coarser. Additionally, the satellite imagery presented alongside these 
data to provide context here is very high resolution (25 cm) relative to 
the open data used to create the classification (10 m). 

Mitigation of such artefacts were implemented by drawing strength 
from the spatial structure of the underlying postcode geography. A 
smoothed average for each of the 64 input measures was calculated for 
every postcode, comprising values from those postcodes found within 
each 160 m buffer. Empirically, this created a new set of spatially lagged 
input measures following the distribution of postcode geography, and 
conceptually produces a more continuous rather than discretely delin
eated representation of context. After fitting an additional Clustergram 
on the spatially smoothed input data, 7 clusters were again identified as 
suitable partitioning, with the output mapped for the same example area 
in Fig. 6 B. This highlights how the additional smoothing process 
returned more contiguous clusters, without some of the artifact effects 

Table 2 
Cluster descriptions.  

Label Description 

A: Inner City and Town 
Centres 

Predominantly found covering many central areas 
of cities and towns; this Group characterises many 
highstreets and small commercial premises 
supporting large working day populations. 
Coalescing with commercial land uses, residential 
accommodation is mostly flats. This Group is also 
observed in some less central commercial parks / 
zones; and dense terraced residential houses 
proximal to these areas with very limited 
greenspace. 

B: Spacious Residential 
Properties 

Areas characterised by this Group are 
predominantly residential and often contain 
properties at a low density, with gardens, wide 
streets and often surrounded by greenspace. 
Typically, this Group is found within larger 
developments on suburban fringes and in villages, 
and mostly containing property that have been 
built since the 1940s, although less prevalently 
since the 2000s. 

C: High Density Urban Core This cluster tends to be found within the built-up 
urban core of many large towns and cities but also 
characterises areas of out-of-town business, retail 
or industrial zones. Coalescing with structures 
supporting a large workday population, residential 
accommodation is predominantly in flats, but also 
includes areas of dense traditional terraced houses. 

D: Rural Residences Properties within this group tend to be residential 
and surrounded by greenspace. These areas are 
characterised by clusters of larger adjoining or 
traditional cottages, with ages dating from before 
1900. 

E: Rural Properties and Farms This Group are mostly found within rural or more 
isolated locations and are typically characterised 
by larger residential properties or farms. As might 
be expected, properties tend to be surrounded by 
greenspace; however, many plots also encompass 
large paved agricultural yards. 

F: Inner Suburban Townhouses 
and Large Terraces 

Properties within these inner suburban locations 
tend to comprise semi-detached properties or 
larger terraces; with some properties sub divided 
into flats. Many of the property within these areas 
are pre-World War 2, some of which have gardens 
/ outdoor space. 

G: Outer Suburbs This Group is mostly found towards the periphery 
of urban areas, consisting of mature residential 
neighbourhoods of mainly semi-detached 
properties. Many of the properties were built after 
World War 2 and until the 1970s and 80s.  
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previously observed. More generally, better overall performance could 
be measured when the fit of the two different clustering solutions to 
their respective data inputs were calculated through a total within sum 
of squares statistic. The input attributes for each postcode were 
compared to their assigned cluster mean, and the squared difference 
between these scores derived. A lower within sum of squares (WSS) 
score equates to a postcode that has a better fit to the assigned cluster, 
and can be summed to give an overall measure of fit for the presented 
solution. This returned a total WSS score of 2,049,026 for the raw CAE 
input and 739,162 for the model with spatial smoothing; representing a 
large improvement, and overall much more compact clusters. Following 
these results; a final version of the smoothed model was returned by 
running k means 10,000 times, extracting the result with the lowest total 
within sum of squares. 

Before examining the characteristics of the identified clusters their 
internal robustness was assessed for systematic differences in cluster 
quality. For the final optimised cluster run, WSS were calculated for 
each postcode and presented at the cluster level and for postcode dis
tricts.3 Fig. 7 presents a box and whisker plot of the WSS scores by their 
associated cluster. As noted earlier, the addition of smoothing resulted 
in lower total WSS, however in the optimised result there are differences 
in fit between clusters, with A, D and E all showing greater error. Such 
errors will be contextualised in the next section after describing the 
cluster characteristics, however by mapping the errors (Fig. 8) we find 
clear spatial variations, with lower error exhibited in urban versus rural 
areas. There are two likely reasons why this effect is observed: the first is 
that there are more postcodes found within urban areas, and as such the 
CAE is learning structure from a larger amount of data derived within 
these locations; and secondly, given that spatial smoothing improved the 

overall classification fit, and given that the density of postcodes is higher 
in urban versus rural areas, this is also likely to have had greater impact 
within these contexts. 

4. Case study: a national classification of context 

Although our final classification covers the full extent of Great 
Britain; to illustrate the overarching geography of the identified pat
terns; a subset of the full output is shown in Fig. 9 for the Liverpool City 
Region, which is in the Northwest of England and comprises six Local 
Authority areas. The postcode clusters are labelled A-G, and the colours 
delineate these different classes. At this scale differentiation between 
primarily residential and commercial areas (Clusters A & C) are visible; 
and differences within urban and more rural parts of the city region can 
be observed, as also aligned with the changing density of points. 

Because the CAE measures forming input to the classification were 
abstract derivations from imagery, these were of limited utility when 
describing salient features of the clusters. As such, a range of ancillary 
data were appended to the postcodes; the sources of which are sum
marised in Table 1. In addition to assisting with description of each 
cluster’s salient characteristics, this process had two additional benefits. 
The first is external validation, in that the clusters should differentiate 
logically between attributes of the built environment; and secondly, as 
an indicator of those types of contextual features that are well 
discriminated through the process of applying the CAE to satellite data 
of the specified resolution. 

For the attributes extracted from the identified ancillary data we 
computed index scores that compare either the proportion or rate within 
a cluster to the national average. These scores are standardized so that 
100 equates to the national average, 50 would be a half and 200 double. 
A tabular representation of the scores, shaded by their relative pro
pensity are shown in Fig. 10. These scores in addition to maps of the 
clusters were used to generate Group labels and descriptions that are 
presented in Table 2. 

Fig. 11. Distribution of the 2019 English Index of Multiple Deprivation rank by cluster.  

3 A postcode district represents the first part of the postcode before the space 
– for example, for the full postcode - PO7 8NJ, the postcode district would be 
PO7. 
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The results present a range of salient attributes found within each 
cluster; illustrating the potential utility of CAE when building classifi
cations aiming to differentiate context. Out of all the Groups presented, 
perhaps the least well differentiated were locations defined as “D: Rural 
Residences” and “E: Rural Properties and Farms”. These had quite 
similar profiles based on the ascribed attributes, however there were 
differences when mapped; notably “D: Rural Residences” tended to 
contain buildings that were more clustered; and “E: Rural Properties and 
Farms” also included more farm locations. For simplicity we have left 
these clusters as presented, but a more parsimonious classification might 
be returned if such clusters were manually merged. 

A further observation on the overall shape of the classification is that 
aspects of morphometric structure are differentiated by the identified 
clusters; notably 4-way junctions and cul-de-sacs. Although such mea
sures likely correlate to other features of context identified by the CAE, it 
is none the less encouraging to see that these differences were observed; 
and we would argue that this indicates potential for higher resolution 
imagery revealing richer measures of street density / complexity. 

Finally, in framing the utility of the created classification, and the 
general approach of using CAE for the derivation of contextual mea
sures, it is also important to explore their limits. The output of the CAE is 
framed here as our best attempt at capturing the characteristics of 
postcode context as represented by the input image taken from the 
specified satellite data. As outlined earlier in this section, the approach 
maps reasonably successfully onto observed structures that differentiate 
places. However, in more general tabular approaches to the analysis of 
urban context such as geodemographic classification, fuller descriptions 
tend to be provided through the inclusion of a wider array of variables 
describing both the physical structure of places and the socio-economic 
characteristics of their residents. Although outside the scope and 

objectives of this work, elsewhere we have demonstrated where 
remotely sensed data have shown utility in differentiating patterns or 
urban socioeconomic structure (Arribas-Bel et al., 2017). Although such 
work takes an alternative methodological approach, it is not clear that 
our windowed approach as presented here is well suited to such pur
poses; and as such we would argue for caution in drawing associations 
beyond the scope of what can be identified from the data. For example, 
Fig. 11 plots the rank distribution of postcodes within England by the 
2019 Index of Multiple Deprivation (1 = the most deprived). Although 
there are some differences, such as more rural clusters tending to be less 
deprived than those in urban areas, there is much overlap. Despite the 
objective of the approach used to generate the IMD being divergent from 
the work presented in this paper, if the same comparative analysis was 
completed with more traditional geodemographic classification, it 
would be possible to see greater differentiation in such patterns, as these 
typically include socio-economic measures. 

Such lack of differentiation on this particular domain may very likely 
be a constraint of the data resolution used for the classification. This is 
illustrated in Fig. 12 by examining two postcodes found with values very 
close to the mean of Cluster 1 within the Liverpool City Region: L18 9TS 
is more deprived and found in the 3rd decile of the IMD, whereas L35 
0PP is more affluent and ranked in the 8th decile. The built structure of 
these areas are quite different, which can be seen on the right column 
images, presenting the higher resolution remotely sensed data. L18 9TS 
are local authority flats within an open greenspace plot, and L35 0PP are 
Semi-Detached properties with private gardens. These are quite 
different areas in terms of their socio-economic circumstances, but their 
grouping into a single cluster is more understandable (as more visibly 
similar) when true colour composites generated from the RGB source 
data are compared (left column). We draw this comparison to illustrate 

Fig. 12. Two Postcodes that were both asigned into 
Cluster B however from different deprivation profiles. 
The 160 m contextual buffers are shown over ESA 
Sentinel 2 (left) and Google satellite imagery (right). 
Modified Copernicus Sentinel data 2021. 
Map data ©2021 Google, ©2021 Bluesky, Bluesky, 
Infoterra Ltd. & COWI A/S, Getmapping plc, Infoterra 
Ltd. & Bluesky, Maxar Technologies, The Geo
Information Group, Map data ©2021.   
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the limits of what the presented work can show, and also the likely 
potential for greater differentiation of social attributes if higher reso
lution data were available and where these have association with 
characteristics of the built environment. 

5. Conclusions and directions for future research 

In this paper we have introduced a new and novel method to extract 
local contextual measures from Sentinel 2 satellite data following the 
distribution of postcodes in Great Britain. Our methodology imple
mented a CAE to produce a data-driven encoding of the context of 160 m 
buffers around each unit postcode. This equated to 1,710,715 different 
image inputs and the massive computational demands necessary to fit 
the CAE model to these data required extensive use of GPU architecture. 
Measures were extracted after the encoding phase of the CAE to reduce 
the source data into 64 separate features representing different encod
ings of the context of each image. The utility of these measures was then 
demonstrated, through their input into a cluster analysis with the 
objective of identifying those areas sharing similar salient contextual 
characteristics. The final output of the model was 7 clusters, which were 
mapped and described through a range of independent ancillary data. 
Our produced representations complement alternative morphometric, 
tabular and LULC approaches to the representation of urban form and 
context. 

Even with input data at the resolution of Sentinel 2 (10 m / pixel), the 
autoencoder process through CNN was illustrated to be extremely sen
sitive; requiring tspatial smoothing of the raw outputs to limit unhelpful 
heterogeneity. Some of this variability related to how context was 
conceptualised in this study: notably through a 160 m square buffer 
around each postcode. This zone was fixed for all postcodes as a 
requirement of the CNN for a Tensorset comprising of tensors of uniform 
size and shape. Furthermore, although the zone chosen for this study 
might be contracted to reduce the contextual extent, through experi
mentation we found that this had quite negative effects on the model 
performance as there were much less data upon which the CNN could 
learn structure. We argue that this presents an interesting case of the 
Modifiable Areal Unit Problem as the success of the analytical technique 
itself are directly related to the zoning and scale of the input data used, 
not just the representations presented. Although outside the scope of this 
study or the potential of those input data utilised, it would be possible 
with higher resolution data to explore these effects systematically. 
Moreover, the CAE demonstrated that it could learn structure from the 
data that are presented, which in this application was a very large corpus 
of images for the national extent. As with many machine learning al
gorithms, CAEs are able to learn more accurate representations of un
derlying structure when presented with larger volumes of data, 
assuming all other things are constant, such as the quality of the data. As 
such, in future work, we argue that there is also a need to explore the 
extent to which overall model performance might be impacted by a more 
constrained geographic extent and reduced data input, and how such 
effects might also interact when also presented with different resolutions 
of input data. Such issues would also warrant investigation in associa
tion with a need for spatial weighting as was applied here, or whether 
other types of weighing schemes or approaches impact model 
performance. 

Overall we are very encouraged by the results of this study, as the 
CAE outputs demonstrated clear utility for the differentiation of contexts 
when these were integrated into a cluster analysis. The output of the 
CAE themselves are however data driven and so need further ancillary 
data to make sense of these representations and ascribe their limits. The 
example of socio-economic differentiation was presented to illustrate 
this point; but also highlights potential for the outputs of the model 
presented here to be combined with other available data to create richer 
profiles of areas; perhaps as input to fuller and more comprehensive 
geodemographic classification. 
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Kang, J., Körner, M., Wang, Y., Taubenböck, H., & Zhu, X. X. (2018). Building instance 
classification using street view images. ISPRS Journal of Photogrammetry and Remote 
Sensing, 145, 44–59. https://doi.org/10.1016/j.isprsjprs.2018.02.006 

Kareem, R. S. A., Ramanjineyulu, A. G., Rajan, R., Setiawan, R., Sharma, D. K., 
Gupta, M. K., … Sengan, S. (2021). Multilabel land cover aerial image classification 
using convolutional neural networks. Arabian Journal of Geosciences, 14(17), 1–18. 
https://doi.org/10.1007/S12517-021-07791-Z/FIGURES/9 

Karney, C. F. F. (2011). Transverse Mercator with an accuracy of a few nanometers. 
Journal of Geodesy. https://doi.org/10.1007/s00190-011-0445-3 

Kotaridis, I., & Lazaridou, M. (2021). Remote sensing image segmentation advances: A 
meta-analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 309–322. 
https://doi.org/10.1016/J.ISPRSJPRS.2021.01.020 

Law, S., Seresinhe, C. I., Shen, Y., & Gutierrez-Roig, M. (2020). Street-frontage-net: 
Urban image classification using deep convolutional neural networks. International 
Journal of Geographical Information Science, 34(4), 681–707. https://doi.org/ 
10.1080/13658816.2018.1555832 

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. 
https://doi.org/10.1038/nature14539 

Liao, J., Cao, J., Wang, K., & Xu, Z. (2022). Land cover classification from very high 
spatial resolution images via multiscale object-driven CNNs and automatic 
annotation. 16(1), 014513. https://doi.org/10.1117/1.JRS.16.014513 

Liu, L., Silva, E. A., Wu, C., & Wang, H. (2017). A machine learning-based method for the 
large-scale evaluation of the qualities of the urban environment. Computers, 
Environment and Urban Systems, 65, 113–125. https://doi.org/10.1016/j. 
compenvurbsys.2017.06.003 

Liu, Y., Singleton, A. D., & Arribas-Bel, D. (2019). A principal component analysis (PCA)- 
based framework for automated variable selection in geodemographic classification. 
Geo-Spatial Information Science, 22(4), 251–264. https://doi.org/10.1080/ 
10095020.2019.1621549 

Lloyd, C. T., Chamberlain, H., Kerr, D., Yetman, G., Pistolesi, L., Stevens, F. R., … 
Tatem, A. J. (2019). Global spatio-temporally harmonised datasets for producing 
high-resolution gridded population distribution datasets. Big Earth Data. https://doi. 
org/10.1080/20964471.2019.1625151 

Mahabir, R., Croitoru, A., Crooks, A., Agouris, P., & Stefanidis, A. (2018). A critical 
review of high and very high-resolution remote sensing approaches for detecting and 
mapping slums: Trends, challenges and emerging opportunities. Urban Science. 
https://doi.org/10.3390/urbansci2010008 

Mesev, T. V., Longley, P. A., Batty, M., & Xie, Y. (1995). Morphology from imagery: 
Detecting and measuring the density of urban land use. Environment & Planning A, 27 
(5), 759–780. https://doi.org/10.1068/a270759 

Middel, A., Lukasczyk, J., Zakrzewski, S., Arnold, M., & Maciejewski, R. (2019). Urban 
form and composition of street canyons: A human-centric big data and deep learning 
approach. Landscape and Urban Planning, 183, 122–132. https://doi.org/10.1016/j. 
landurbplan.2018.12.001 

Morton, D., Marston, C. G., O’Neil, A. W., & Rowland, C. S. (2020). Land cover map 2017 
(land parcels, N. Ireland). NERC Environmental Information Data Centre. https://doi. 
org/10.5285/efb98222-5b9a-4d56-990d-5ab85eaf187e 

Nogueira, K., Penatti, O. A. B., & dos Santos, J. A. (2017). Towards better exploiting 
convolutional neural networks for remote sensing scene classification. Pattern 
Recognition, 61, 539–556. https://doi.org/10.1016/J.PATCOG.2016.07.001 

Palmer, G., Green, M., Boyland, E., Vasconcelos, Y. S. R., Savani, R., & Singleton, A. 
(2021). A deep learning approach to identify unhealthy advertisements in street 
view images. Scientific Reports, 11(1), 4884. https://doi.org/10.1038/s41598-021- 
84572-4 

Pokhriyal, N., & Jacques, D. C. (2017). Combining disparate data sources for improved 
poverty prediction and mapping. Proceedings of the National Academy of Sciences of 
the United States of America. https://doi.org/10.1073/pnas.1700319114 

Proville, J., Zavala-Araiza, D., & Wagner, G. (2017). Night-time lights: A global, long 
term look at links to socio-economic trends. PLoS One. https://doi.org/10.1371/ 
journal.pone.0174610 

Saeedimoghaddam, M., & Stepinski, T. F. (2020). Automatic extraction of road 
intersection points from USGS historical map series using deep convolutional neural 
networks. International Journal of Geographical Information Science, 34(5), 947–968. 
https://doi.org/10.1080/13658816.2019.1696968 

Salvadori, L., Badas, M. G., di Bernardino, A., Querzoli, G., & Ferrari, S. (2021). A street 
graph-based morphometric characterization of two large urban areas. Sustainability, 
13(3), 1025. https://doi.org/10.3390/SU13031025 

Sampson, R. J. (2019). Neighbourhood effects and beyond: Explaining the paradoxes of 
inequality in the changing American metropolis. Urban Studies, 56(1), 3–32. https:// 
doi.org/10.1177/0042098018795363 

Schonlau, M. (2002). The clustergram: A graph for visualizing hierarchical and 
nonhierarchical cluster analyses. The Stata Journal: Promoting Communications on 
Statistics and Stata. https://doi.org/10.1177/1536867x0200200405 

Shendryk, Y., Rist, Y., Ticehurst, C., & Thorburn, P. (2019). Deep learning for multi- 
modal classification of cloud, shadow and land cover scenes in PlanetScope and 
Sentinel-2 imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 157, 
124–136. https://doi.org/10.1016/J.ISPRSJPRS.2019.08.018 

Singleton, A. D., Alexiou, A., & Savani, R. (2020). Mapping the geodemographics of 
digital inequality in Great Britain: An integration of machine learning into small area 
estimation. Computers, Environment and Urban Systems. https://doi.org/10.1016/j. 
compenvurbsys.2020.101486 

Singleton, A. D., & Arribas-Bel, D. (2019). Geographic data science. Geographical Analysis. 
https://doi.org/10.1111/gean.12194 

Singleton, A. D., & Spielman, S. E. (2014). The past, present, and future of 
geodemographic research in the United States and United Kingdom. The Professional 
Geographer, 66(4), 558–567. 

Spielman, S. E., & Singleton, A. D. (2015a). Studying neighborhoods using uncertain data 
from the American community survey: A contextual approach. Annals of the 
Association of American Geographers, 105(5), 1003–1025. 

Spielman, S. E., & Singleton, A. D. (2015b). Studying neighborhoods using uncertain data 
from the American community survey: A contextual approach. Annals of the 
Association of American Geographers, 105(5), 1003–1025. https://doi.org/10.1080/ 
00045608.2015.1052335 

Steele, J. E., Sundsøy, P. R., Pezzulo, C., Alegana, V. A., Bird, T. J., Blumenstock, J., … 
Bengtsson, L. (2017). Mapping poverty using mobile phone and satellite data. 
Journal of the Royal Society, Interface. https://doi.org/10.1098/rsif.2016.0690 

Vanderhaegen, S., & Canters, F. (2017). Mapping urban form and function at city block 
level using spatial metrics. Landscape and Urban Planning, 167, 399–409. https://doi. 
org/10.1016/J.LANDURBPLAN.2017.05.023 

Venerandi, A., Zanella, M., Romice, O., Dibble, J., & Porta, S. (2016). Form and urban 
change – An urban morphometric study of five gentrified neighbourhoods in London. 
44(6), 1056–1076. https://doi.org/10.1177/0265813516658031 

Webber, R., & Burrows, R. (2018). The predictive postcode: The geodemographic 
classification of British society (SAGE). 

Wei, R., Rey, S., & Knaap, E. (2021). Efficient regionalization for spatially explicit 
neighborhood delineation. International Journal of Geographical Information Science, 
35(1), 135–151. https://doi.org/10.1080/13658816.2020.1759806 

Weng, Q., Mao, Z., Lin, J., & Guo, W. (2017). Land-use classification via extreme learning 
classifier based on deep convolutional features. IEEE Geoscience and Remote Sensing 
Letters, 14(5), 704–708. https://doi.org/10.1109/LGRS.2017.2672643 

Weng, Q., Quattrochi, D., & Gamba, P. E. (2018). Urban Remote Sensing. CRC Press.  
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