Computers, Environment and Urban Systems 95 (2022) 101802

Contents lists available at ScienceDirect
Compurters
ENVIRONMENT

AND
URBAN SYSTEMS

Computers, Environment and Urban Systems

journal homepage: www.elsevier.com/locate/ceus

ELSEVIER

t.)

Check for

Estimating generalized measures of local neighbourhood context from e
multispectral satellite images using a convolutional neural network

Alex Singleton " Dani Arribas-Bel, John Murray, Martin Fleischmann

Geographic Data Science Lab, Department of Geography and Planning, University of Liverpool, UK

ARTICLE INFO ABSTRACT

Keywords:

Deep learning

Convolutional neural networks
Urban morphology
Multispectral satellite imagery
Cluster analysis

The increased availability of high-resolution multispectral imagery captured by remote sensing platforms pro-
vides new opportunities for the characterisation and differentiation of urban context. The discovery of gener-
alized latent representations from such data are however under researched within the social sciences. As such,
this paper exploits advances in machine learning to implement a new method of capturing measures of urban
context from multispectral satellite imagery at a very small area level through the application of a convolutional
autoencoder (CAE). The utility of outputs from the CAE is enhanced through the application of spatial weighting,
and the smoothed outputs are then summarised using cluster analysis to generate a typology comprising seven
groups describing salient patterns of differentiated urban context. The limits of the technique are discussed with
reference to the resolution of the satellite data utilised within the study and the interaction between the geog-
raphy of the input data and the learned structure. The method is implemented within the context of Great Britain,

however, is applicable to any location where similar high resolution multispectral imagery are available.

1. Introduction

The research presented in this paper develops a new national
multidimensional and generalized measure of urban spatial structure.
The derivation of such contextual measures have a rich academic his-
tory, and are used for a variety of applications related to the spatial
targeting of policy or other interventions. In this example we focus on
the built environment through a methodologically innovative analysis of
high-resolution satellite derived imagery, although as discussed later,
the output measures from this work also have the potential to enhance
more general-purpose geodemographic classifications through the
integration of additional population and socioeconomic data. The key
innovation of this work is therefore to introduce and implement an
entirely new way in which the built environment context of small areas
can be classified from high-resolution satellite data using a convolu-
tional neural network. Our new measure of “context” is made available
at a very high spatial resolution for a case study covering the entire
extent of Great Britain. The input measures and output classification are
all placed within the public domain, and available from: https
://dataverse.harvard.edu/dataverse/sat_cnn and for reproducibility,
the code can also be found here: https://github.com/GDSL-UL/sat_cnn.

The paper is organised as follows: we first describe the context for
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this work, then those data used in the study as well as the many and
varied challenges encountered in its ingestion and cleaning; next, we
provide an overview of the specification and implementation of our
model; then, after running the model we present a case study application
illustrating how the outputs might be operationalised to derive insight
about urban context, exploring this representation in relation to internal
and external validation metrics. We close with some concluding remarks
about the potential of our framework to advance our understanding of
the contexts of cities and their spatial structure.

1.1. Framing the challenges and opportunities for the measurement of
local urban context

Those ways in which the outcomes of human behaviour are influ-
enced by the context of those places in which they live, interact and
work are fundamental to our understanding of urban systems. The
quantitative measurement of urban spatial structure has a legacy of
development within Urban Geography and Planning (Batty, 2013), both
as a normative tool in practice or as an epistemological construct aiming
to advance knowledge about how cities work. There are multiple ways in
which researchers have attempted to represent context; summarised
here through three distinctive computational approaches (Fig. 1 A-C):
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Fig. 1. Different approaches to the measurement of urban context: showing the urban area of Liverpool, North West UK (Morton, Marston, O’Neil & Rowland

(2020)).

Data 2021 © Space Syntax Ltd.

Contains OS data © Crown copyright and database right 2021.

Historic England 2015.

Office for National Statistics licensed under the Open Government Licence v.3.0.
© UKCEH 2017.
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Fig. 1. (continued).

those based on geometry which ascribe morphometric attributes derived
from representations of the built environment, those which are based on
the summary of tabular measures of built or social attributes collated for
small area geography (often called geodemographics); and those derived
from uniform gridded data such as remotely sensed imagery. Although
the approaches vary in their theoretical rationale and implementation,
they typically share common goals to better derive a representation of
the complex organisational structure of and beyond urban areas. This
includes the measurement of salient characteristics, the derivation of
insight about specific aspects of latent structure that are not directly
observable, and the relationship between such observations to function
and evolutional form.

In a general sense, morphometric analysis (Fig. 1A) aims to provide a
lexicon of urban structure; derived through various approaches to metric
derivation that typically examine aspects of size, shape and inter-
connectivity of digitised representations of urban features (Hijazi et al.,
2016). Such measures are often ascribed at the scale of the features
being assessed; for example, connectivity scores for street geometry
(Araldi & Fusco, 2019; Boeing, 2018) or the spatial arrangement of
buildings (Vanderhaegen & Canters, 2017); although may also be
complied for ancillary derived features or summarised through aggre-
gate units (Fleischmann, Feliciotti, Romice, & Porta, 2021). Although
not universally the case (Araldi & Fusco, 2019), such measures tend not
to be combined, and are mostly presented as univariate indicators.

By contrast, tabular approaches to the summary of only urban
structure are reasonably rare (Fig. 1 B) and tend to apply either

combinatorial indexes or cluster analysis to a set of small area stan-
dardized measures and may conflate both social and built characteristics
into multidimensional scores or categories. Such approaches overlap
with morphometric analysis when derived measures are considered
within zonal geography, although typically draw on a wider range of
inputs beyond those derived from geometric properties of the built
environment. Data sources for such studies typically include attributes
derived from Census, surveys, administrative or commercial data, and as
a technique where typological representations are created, are
commonly referred to as geodemographic classification (Webber &
Burrows, 2018). However, divergent from the work presented here, such
classifications typically describe both the social and built characteristics
of small areas (Singleton, Alexiou, & Savani, 2020; Singleton & Spiel-
man, 2014; Spielman & Singleton, 2015b), and there are much more
limited examples of applying geodemographic classification techniques
to purely built environment data (Alexiou, Singleton, & Longley, 2016).

Data derived from remotely sensed images such as satellites and
other airborne sensors also have a legacy of use within this domain
through the development of land cover / land use (LCLU) classifications
(Fig. 1 C). LCLU classification typically considers the spectral ‘signa-
tures’ of remotely sensed images, which are generated as a result of how
different surfaces reflect distinctive wavelengths of light. Such classifi-
cations are often compiled at a pixel level and may also include mea-
sures that relate to the surrounding values within a moving window
around each pixel. In many cases the classes are often predefined before
the classification is carried out and are usually discrete, but can also be
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Fig. 3. The frequency of images by date that were extracted for each postcode.

fuzzy. Alternative approaches classify objects from delineated areas of
imagery (Helber, Bischke, Dengel, & Borth, 2018; Shendryk, Rist,
Ticehurst, & Thorburn, 2019). In some studies, vector data such as built
environment features are integrated into the models in their creation or
as post facto processing. LCLU methods are also differentiated from
object detection methods that attempt to extract specific geographic
features (e.g buildings, roads etc) from high resolution imagery
(Blaschke, 2010).

With the overarching aim of this paper being to derive a measure of
context of where people live, this is divergent from the majority of more
traditionally orientated LCLU studies. However, there are a growing
number of applications from within this literature that implement or

evaluate innovative machine learning methodologies when applied to
remotely sensed imagery, notably using convolutional neural networks
and other related techniques (Cheng, Han, & Lu, 2017). Such methods
frame our work, and have been shown to improve land cover classifi-
cation, and particularly in case studies where high-resolution spatial
imagery are available (Chen, Ming, & Lv, 2019a, 2019b; Gaetano, Ienco,
Ose, & Cresson, 2018; Liao, Cao, Wang, & Xu, 2022; Zhang et al., 2018).
Although a number of innovative techniques have been proposed to
mitigate such issues (Fan, Feng, Wang, Yan, & Zhang, 2020), there
remain common challenges in many studies when supervised methods
are being applied, as these rely upon labelled data (Bhosle & Musande,
2019; Feng et al., 2019; Heryadi, Miranda, Heryadi, & Miranda, 2019;
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Fig. 5. A Clustergram showing the potential suitability of k = 2 to 19 solutions.

Kareem et al., 2021). Similar issues care found within this paper, both as
aresult of the data used, but also by design as our theoretical framework
assumes no prior knowledge about the geography of context. A more
related literature aligned to the work presented here is semantic seg-
mentation (Balarabe & Jordanov, 2021; Nogueira, Penatti, & dos Santos,
2017; Weng, Mao, Lin, & Guo, 2017) which involves the partitioning of
an image into regions / objects sharing similarity where models can be
applied to extract semantic meaning (Kotaridis & Lazaridou, 2021). As
will be described in the next section, a key difference here is that our
objects are kept to a uniform size; and there are no prior labels seman-
tically differentiating content, with this structure being learnt and then
inferred through the application of our specified method.

The approaches briefly presented above all emerged from very
different histories and disciplinary backgrounds, however share com-
monality in their ambitions to translate rich spatial data into insight

about the structure of the built or natural environment. Within Great
Britain, morphometric and tabular approaches have typically offered
greater detail in urban over rural areas, as highlighted in Fig. 1.
Morphometric approaches are more prevalently derived for specific
policy / planning applications located within urban areas (Dibble et al.,
2017; Hillier, Leaman, Stansall, & Bedford, 2016; Salvadori, Badas, di
Bernardino, Querzoli, & Ferrari, 2021; Venerandi, Zanella, Romice,
Dibble, & Porta, 2016), whereas tabular geodemographic approaches
are often derived for a national extent, and in addition to capturing some
built environment characteristics, will often aim to describe a brevity of
population characteristics or behaviours (Gale, Singleton, Bates, &
Longley, 2016). Perhaps unsurprisingly given the focus on the natural
environment, the presented LCLU (Fig. 1 C) only differentiates between
urban and suburban areas, with much greater detail provided for non-
urban areas. Elsewhere, there are more urban focused applications of
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B) UPRN Coloured by their associated postcode cluster (generated from the smoothed CNN output)

Fig. 6. Pilot cluster analysis with the raw and smoothed data inputs.

High Resolution (25 cm) Vertical Aerial Imagery [JPG geospatial data], Scale 1:500, Tiles:sj4289, sj4288, sj4189, sj4188, Updated: 29 October 2018, Getmapping,
Using: EDINA Aerial Digimap Service, <https://digimap.edina.ac.uk>, Downloaded: 2021-05-28 09:35:02.49.

Contains OS data © Crown copyright and database right 2021.

Contains GeoPlace data © Local Government Information House Limited copyright and database right 2021.
Source: Office for National Statistics licensed under the Open Government Licence v.3.0.

LCLU; for example, the European Environment Agency Urban Atlas’,
which delineates built up urban areas into multiple categories of density,
industrial and other aspects of supporting infrastructure.

For many normative applications of contextual measures, and

1 https://land.copernicus.eu/local /urban-atlas/urban-atlas-2018

particularly in tabular approaches, these are concerned with the char-
acterisation of different types of “neighbourhood”, which although
might be argued as varying in their definition / ontology (Forrest &
Kearns, 2001; Galster, 2001), they share an ambition to capture
important effects on behaviours or outcomes that extend beyond those
which are observable at the individual scale (Galster, 2013; Sampson,
2019; van Ham, Manley, Bailey, Simpson, & Maclennan, 2012).
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Fig. 7. Within Sum of Squares aggregated by Cluster; with the frequency of postcodes in brackets.

Although conceptually this might be argued as suboptimal (Wei, Rey, &
Knaap, 2021), for analytic simplicity or necessity many urban applica-
tions utilise zonal geographies created for statistical, political or
administrative purposes. Such shorthands for delineated “neighbour-
hood” zones lend their characterisation through tabular forms of data
where it may be possible to compile measures directly for the chosen
geographic units. Comparatively, although LCLU can also be derived for
discrete zonal geography or land parcels; this is less common as their
inputs are primarily sourced from continuous fields (raster images), and
indeed, such representations also remain a common output format for
these measures. For morphometric measures, these tend to be ascribed
to either discrete built environment objects or their atomistic compo-
nents, and again do not easily translate into zonal geographies.
Morphometric, tabular and LCLU approaches bring complementary
insight to our understanding of urban contexts that hitherto remain
predominantly decoupled given their different disciplinary origins and
divergent uses. We position our new framework as a supplement rather
replacement of existing approaches, and as a new theoretical lens
through which local contextual differentiation can be measured more
flexibly alongside a nuanced definition of “neighbourhood” geography.
As discussed earlier, the use of remotely sensed data for LCLU is well
established, and their use in urban applications more generally is not
new (Imhoff, Lawrence, Stutzer, & Elvidge, 1997; Mesev, Longley, Batty,
& Xie, 1995). However, we make the case that applications of remotely
sensed data are likely to gain increased importance and utility in urban
settings: firstly given the proliferation of newer and higher resolution
data that are being generated as a result of advancing space technology
(Esch et al., 2020; Zhu et al., 2019), and secondly as a result of advances
in the fields of computer vision and machine learning. However,

realising this potential requires notable methodological advancement
(Ibrahim, Haworth, & Cheng, 2020; Singleton & Arribas-Bel, 2019)
given that the vast amount of information that is potentially uncoverable
within such data are stored in highly unstructured forms, provided as
images, colour patterns, and additional bands recorded by other on-
device sensors. We would argue that potential value contained within
such data are also increasing given that they are framed by an era when
the funding of many traditional large-scale data collection exercises such
as the census are under fiscal constraint; and when there are growing
methodological challenges in large surveys such as declining response
rates (Spielman & Singleton, 2015a).

Much of the recent work in urban geography / planning exploiting
imagery data has tended to focus on single issues related to measures of
urbanization, economic activity or population, with more recent work
beginning to model their evolution over time (Bennett & Smith, 2017).
Such studies are typically implemented to either derive global
comparative measures (Arribas-Bel, Patino, & Duque, 2017; Lloyd et al.,
2019; Pokhriyal & Jacques, 2017; Proville, Zavala-Araiza, & Wagner,
2017); or are applied within low- and middle-income countries (LMICs)
where other sources of granular data may be less prevalent (Jean et al.,
2016; Mahabir, Croitoru, Crooks, Agouris, & Stefanidis, 2018; Steele
et al., 2017; Wurm & Taubenbock, 2018). There are emerging but more
limited examples of the application of remotely sensed data to create
more detailed measures of the socio-economic landscape (Weng, Quat-
trochi, & Gamba, 2018).
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2. Methodology
2.1. Data - measuring local spatial structure from space

The overarching objective of this paper was to present a new method
of measuring local context that could be flexibly applied within different
settings to meet variegated definitions of neighbourhood. As such, the
aim here was not to ascribe a measure of context with universal coverage
for all land area within the UK, as might be the case in LULC, but rather
to focus on those localities where people live, describing these areas in
terms of their varying context. Within Great Britain, unit postcodes
provide a useful base geography upon which to build such a measure
which on average identify around 13 residential addresses; although
postcodes do capture both residential and business addresses, and also
are not always mutually exclusive. In Great Britain there are 1,710,715
current postcodes which broadly follow a spatial distribution aligned
with residential density; so more are found within closer proximity in
urban versus rural areas. A database of georeferenced postcodes was
supplied by the Office for National Statistics under an open licence.”

The second main source of data are high resolution multi spectral

2 https://geoportal.statistics.gov.uk/datasets/ons-postcode-directory-may
-2021

Computers, Environment and Urban Systems 95 (2022) 101802

satellite imagery. The highest resolution open satellite data available
with coverage for Great Britain are supplied by the European Space
Agency (ESA) and derived from Copernicus Sentinel 2. ESA publish the
data in 12 spectral bands, at 60 m, 20 m and 10 m resolution, as well as a
true colour image (TCI) generated from the visible red, green and blue
(RGB) bands. For the purpose of this exercise, we only used the 10 m
resolution bands for RGB and Near Infrared; utilising the RGB bands to
create a bespoke TCI. We opted to build our own TCI as the ESA com-
posite observed a clip range of values at the 0.1% and 99.9% percentiles
which resulted in loss of detail and clarity at the lower and higher ends
of the spectral range. Although this issue affects only 1 in 1000 pixels,
these appeared disproportionately represented on both dark and light
roofs of buildings resulting in the edges of these features becoming fuzzy
(Fig. 2). To avoid this potential information loss a bespoke TCI was
generated where clipping at various percentiles were evaluated, with the
final choice being to not clip at the lower end since this comprised very
few observations. We then apply white balancing at four standard de-
viations from median, scaled to the range of 0 to 1 where values greater
than one were considered outliers. There were additional benefits to this
re-processing. For example, because ESA clipping operations are applied
on a tile-by-tile basis, this resulted in different levels of brightness across
adjacent TCI tiles; and as such, our re-processing which covered the
whole of the GB extent returned a more consistent level of brightness
across all images; with such normalisation being acutely important for
nationally comparative purposes. An example of the ESA TCI and our re-
processed image is shown in Fig. 2 A and B; with the latter offering
greater clarity.

As discussed, the target geography for the output of this work was a
measure derived for each unit postcode, and as such, a lookup was
required between these locations and the ESA Copernicus Zone corre-
sponding to the image tile extent. ESA supply a set of vector multi-
polygons that were used in a large point in polygon operation relative
to all postcode locations. These are provided in WGS84 so were con-
verted to UTM to avoid spherical distortion (Karney, 2011) and loaded
into a spatial database.

The analytical framework discussed in the next section was imple-
mented with TensorFlow, which is an Open Source library for the
development and training of machine learning models. We utilised this
within a GPU (NVIDIA RTX8000) environment to enable more rapid
(and feasible) computation. Input to TensorFlow is called a Tensorset,
which is stored in GPU memory; and in this case comprised a separate
tensor (multidimensional array) for each postcode composed of four
dimensions (Near Infra Red-NIR, Red, Green, Blue). Sentinel 2 data
were matched to each postcode using our database of ESA manifest ta-
bles against a date range and a cloud free filter. The optimal solution for
temporal consistency would be full coverage of Great Britain for single
cloud free day, however this is not realistic for all locations. As such, we
sought images between 1 April 2020 to 30 September 2020 and aimed to
extract cloud free images for each postcode within this date range. A
distribution of these images for all live postcodes are shown in Fig. 3;
spanning the period 7th April 2020 through to 21st September 2020.
From the available swaths, only those where the ESA metadata
described 10% or less cloud cover filter were considered; which is a
score ascribed for the entire swath.

Given that the source imagery was at 10 m resolution, a 16 x 16
(160 m x 160 m) square buffer was created for each postcode, thus
forming each tensor. A tensor requires a square and symmetric matrix so
it was not possible to utilise other buffer shapes (e.g. circle) or non-
uniform geometry. This specific size was chosen as the closest to the
median unit postcode area for Great Britain, which was derived by
Voronoi polygons. As such, when we refer to the “context” of a postcode,
empirically this is defined as a square buffer of 160 m around each
postcode centroid. At a conceptual level, the scale at which context is
experienced might be argued as better aligned to a street geography
rather than a buffer zone. However, the utility of considering a wider
area brings benefit in that this captures factors beyond a postcode
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Fig. 9. The Liverpool City Region contextual Postcode geography.

Table 1
Ancillary data used to describe the clusters.
Measure Geography  Source Year/
Month
Limited Postcode Valuation Office Agency; 2021/
Companies Companies House Register 02

Postcode Count

Council Tax Bands ~ LSOA
#

Valuation Office Agency; Housing 2019/

Stock Statistics 09

Property Type * LSOA Valuation Office Agency; Housing 2019/
Stock Statistics 09

Year Built Bands *  LSOA Valuation Office Agency; Housing 2019/
Stock Statistics 09

Postcode Postcode Office for National Statistics 2011/
Population /Statistics Scotland; 2011 Census 03

Postcode NDVI Postcode European Space Agency; Sentinel 2 2021/
02

House Type * Postcode Ministry of Housing, Communities 2020/
& Local Government; Energy 21

Performance Certificate

Road Features Network OS Open Roads 2020/

21

Notes: # - These data were only available in England and Wales.

centroid that may also contribute to context. For example, a postcode
surrounded by greenspace may be perceived very differently to one that
is characterised by noisy roads or an industrial area. From the available

swaths, buffer images that were closest to the swath pixel level aggre-
gate median were extracted; alongside additional checks for damaged
pixels.

2.2. Model design and training

The overarching aim of this analysis was to create a set of repre-
sentative measures that describe the characteristics of the area sur-
rounding every GB postcode as recorded within the associated input
tensor set (multiple tensors) from the satellite image. To this end, we
applied a Convolutional Neural Network (CNN) to derive a set of
discriminative features that retain the information contained in the
satellite data but effectively compress its dimensionality. Convolutional
Neural Networks, the workhorse of deep learning (Lecun, Bengio, &
Hinton, 2015), are a family of machine learning techniques that has seen
wide use in a range of recent urban spatial problems related to the
identification of features or the characterisation of different types of
imagery (Ibrahim et al., 2020). Applications to imagery data are quite
diffuse but include: the characterisation of street imagery (Comber,
Arribas-Bel, Singleton, & Dolega, 2020; Law, Seresinhe, Shen, &
Gutierrez-Roig, 2020; Liu, Silva, Wu, & Wang, 2017; Middel, Lukasczyk,
Zakrzewski, Arnold, & Maciejewski, 2019), measuring the evolution of
urban features (Saecedimoghaddam & Stepinski, 2020), regional move-
ment (Yang & Gidofalvi, 2020), and detectingvarious kinds of urban
objects (Alizadeh Kharazi & Behzadan, 2021; Branson et al., 2018;
Campbell, Both, Sun, & Chayn)., 2019; Kang, Korner, Wang,
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Fig. 10. Heatmap of index scores describing the clusters.

Taubenbock, & Zhu, 2018; Palmer et al., 2021; Zhao, Pang, & Wang,
2018).

Unlike many applications of CNNs, our approach here is unsuper-
vised. This means that instead of training a network to predict a set of
predefined labels or values, we use it to parse through the set of images
and derive measures that aim to represent their latent structure. A
convolutional autoencoder (CAE) is a type of CNN that performs this
process. The CAE architecture is composed of two stages. The first is
encoding, where the underlying structure of an image is learnt and stored
in a latent vector of lower dimensionality to the original image. Once the
latent representation is learnt, a second phase, the decoding, aims to
reconstruct an image with similar characteristics to the input from the
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latent vector. For our application, the input tensor for each postcode
comprised 16x16x4 (1024) pixel values which correspond to the 160 m
(10 m resolution) square buffer around each postcode for the red, green,
blue and near infrared bands of the satellite data.

For the later purpose of creating a classification, we only required the
latent representation of the data: this encoding phase is summarised in
the left part of Fig. 4 where the dimensionality reduction at each
convolution is presented (f.). However, as validation of this encoding,
the decoding phase (fg) was also implemented under the assumption that
more effective encoding would return more accurate decoding. As such,
when building our model, 20% of the original source images were held
back as a validation sample, and the model converged to 88.74%
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Table 2
Cluster descriptions.

Label Description

A: Inner City and Town
Centres

Predominantly found covering many central areas
of cities and towns; this Group characterises many
highstreets and small commercial premises
supporting large working day populations.
Coalescing with commercial land uses, residential
accommodation is mostly flats. This Group is also
observed in some less central commercial parks /
zones; and dense terraced residential houses
proximal to these areas with very limited
greenspace.

Areas characterised by this Group are
predominantly residential and often contain
properties at a low density, with gardens, wide
streets and often surrounded by greenspace.
Typically, this Group is found within larger
developments on suburban fringes and in villages,
and mostly containing property that have been
built since the 1940s, although less prevalently
since the 2000s.

This cluster tends to be found within the built-up
urban core of many large towns and cities but also

B: Spacious Residential
Properties

C: High Density Urban Core

characterises areas of out-of-town business, retail
or industrial zones. Coalescing with structures
supporting a large workday population, residential
accommodation is predominantly in flats, but also
includes areas of dense traditional terraced houses.
Properties within this group tend to be residential
and surrounded by greenspace. These areas are
characterised by clusters of larger adjoining or
traditional cottages, with ages dating from before
1900.

This Group are mostly found within rural or more
isolated locations and are typically characterised
by larger residential properties or farms. As might
be expected, properties tend to be surrounded by
greenspace; however, many plots also encompass
large paved agricultural yards.

Properties within these inner suburban locations

D: Rural Residences

E: Rural Properties and Farms

F: Inner Suburban Townhouses
and Large Terraces tend to comprise semi-detached properties or
larger terraces; with some properties sub divided
into flats. Many of the property within these areas
are pre-World War 2, some of which have gardens
/ outdoor space.
This Group is mostly found towards the periphery
of urban areas, consisting of mature residential

G: Outer Suburbs

neighbourhoods of mainly semi-detached
properties. Many of the properties were built after
World War 2 and until the 1970s and 80s.

validation accuracy after 100 training epochs. The decoded portion of
the model was then discarded, and the output of the encoding phase of
the CAE was retained. This comprised a set of learned latent represen-
tations of dimensions 8x8x1 for each area surrounding a postcode. We
then use these as the input dataset for the next phase of the analysis with
a record for every postcode and 64 separate attributes describing the
context of their surrounding 160 m area.

Our hypothesis in this work was that the CAE would derive a useful
characterisation of salient attributes of the context for each postcode;
akin to how a principle component analysis (PCA) might be applied in
the analysis of tabular data(Liu, Singleton, & Arribas-Bel, 2019) but
relaxing the linearity of PCA to allow for complex, non-linear repre-
sentations of the input images. In practical terms, each of the 64 di-
mensions output from this process equated to an abstract aspect of the
learned structure. In isolation, these may form a useful input to pre-
dictive models aligned to some specific outcome. In our context how-
ever, given their very detailed nature, we require further summary to
derive a useful aggregate indicator of comparative and generalisable
urban context.
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3. Results: representing salient context through cluster analysis

As introduced earlier, tabular approaches to the representation of
urban context will often take a set of input measures for different social
or built environment characteristics and apply a clustering algorithm to
derive discrete labels describing salient characteristics. Following pre-
vious work in the creation of geodemographic and built environment
classifications (Alexiou et al., 2016; Gale et al., 2016; Spielman &
Singleton, 2015b), we applied a k-means clustering algorithm to the
latent vectors produced by the CAE. K-means searched the feature space
of its input data (1,710,715 x 64) to find those postcodes sharing similar
characteristics. K-means was initiated using k random locations (seeds),
to which all postcodes were matched to their nearest seed. Cluster mean
values across the input attributes were then calculated and postcodes
reassigned to their nearest cluster centroid. This process was repeated
until no further assignments were made. Because k-means is initiated
with a random seed, the results are stochastic; and in order to obtain an
optimal fit, each k-means model was run 10,000 times, retaining the
model that best fit the data, as measured by a total within sum of squares
statistic. Despite the relative computational efficiency of k-means, the
very high dimensionality of this problem, alongside the requirement for
multiple runs required parallel computation, and as such was also
completed within a GPU framework.

A general challenge for k-means is assigning an appropriate number
of clusters (k) that represent yet uncovered structure contained within
the input data, under the assumption that there is no theoretical rational
for selecting a particular value of k. To explore a suitable value for k we
implemented a Clustergram (Schonlau, 2002). This presents different
potential k values by plotting the weighted mean of the first component
of a principal component analysis (PCA) for each individual cluster.
Given that the first component of a PCA provides measures the majority
of variance contained within the input data, then separation of the
clusters along the Y axis gives an indicatior of their difference. Such
charts also highlight how clusters are spit by moving to different values
of k; with the width of the lines representing the overall size of the
cluster for each solution. A Clustergram is shown in Fig. 5 and was
created to explore potential values of k in the range 2 to 19. From this
analysis a k = 7 solution was chosen which demonstrated clear sepa-
ration between the clusters.

Ak =7 model was then run for 1000 iterations of k means to explore
the saliency of this solution. After mapping the clusters, it became
apparent how sensitive the CAE model was at picking up differences
between the input images. On balance this was sub optimal both in terms
of the utility of the classification created, but also as a representation of
how context might be experienced. An example of the issue is illustrated
in Fig. 6 for an area of South Liverpool, UK, which plots a set of resi-
dential addresses (unique property reference numbers: UPRN) ascribed
with a colour corresponding to their associated postcode cluster (mul-
tiple UPRN per postcode). Many of the clusters are not spatially
contiguous; and although UPRN are shown here to better delineate
street morphology; the input postcodes and their associated buffers are
coarser. Additionally, the satellite imagery presented alongside these
data to provide context here is very high resolution (25 cm) relative to
the open data used to create the classification (10 m).

Mitigation of such artefacts were implemented by drawing strength
from the spatial structure of the underlying postcode geography. A
smoothed average for each of the 64 input measures was calculated for
every postcode, comprising values from those postcodes found within
each 160 m buffer. Empirically, this created a new set of spatially lagged
input measures following the distribution of postcode geography, and
conceptually produces a more continuous rather than discretely delin-
eated representation of context. After fitting an additional Clustergram
on the spatially smoothed input data, 7 clusters were again identified as
suitable partitioning, with the output mapped for the same example area
in Fig. 6 B. This highlights how the additional smoothing process
returned more contiguous clusters, without some of the artifact effects
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Fig. 11. Distribution of the 2019 English Index of Multiple Deprivation rank by cluster.

previously observed. More generally, better overall performance could
be measured when the fit of the two different clustering solutions to
their respective data inputs were calculated through a total within sum
of squares statistic. The input attributes for each postcode were
compared to their assigned cluster mean, and the squared difference
between these scores derived. A lower within sum of squares (WSS)
score equates to a postcode that has a better fit to the assigned cluster,
and can be summed to give an overall measure of fit for the presented
solution. This returned a total WSS score of 2,049,026 for the raw CAE
input and 739,162 for the model with spatial smoothing; representing a
large improvement, and overall much more compact clusters. Following
these results; a final version of the smoothed model was returned by
running k means 10,000 times, extracting the result with the lowest total
within sum of squares.

Before examining the characteristics of the identified clusters their
internal robustness was assessed for systematic differences in cluster
quality. For the final optimised cluster run, WSS were calculated for
each postcode and presented at the cluster level and for postcode dis-
tricts.® Fig. 7 presents a box and whisker plot of the WSS scores by their
associated cluster. As noted earlier, the addition of smoothing resulted
in lower total WSS, however in the optimised result there are differences
in fit between clusters, with A, D and E all showing greater error. Such
errors will be contextualised in the next section after describing the
cluster characteristics, however by mapping the errors (Fig. 8) we find
clear spatial variations, with lower error exhibited in urban versus rural
areas. There are two likely reasons why this effect is observed: the first is
that there are more postcodes found within urban areas, and as such the
CAE is learning structure from a larger amount of data derived within
these locations; and secondly, given that spatial smoothing improved the

3 A postcode district represents the first part of the postcode before the space
— for example, for the full postcode - PO7 8NJ, the postcode district would be
PO7.
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overall classification fit, and given that the density of postcodes is higher
in urban versus rural areas, this is also likely to have had greater impact
within these contexts.

4. Case study: a national classification of context

Although our final classification covers the full extent of Great
Britain; to illustrate the overarching geography of the identified pat-
terns; a subset of the full output is shown in Fig. 9 for the Liverpool City
Region, which is in the Northwest of England and comprises six Local
Authority areas. The postcode clusters are labelled A-G, and the colours
delineate these different classes. At this scale differentiation between
primarily residential and commercial areas (Clusters A & C) are visible;
and differences within urban and more rural parts of the city region can
be observed, as also aligned with the changing density of points.

Because the CAE measures forming input to the classification were
abstract derivations from imagery, these were of limited utility when
describing salient features of the clusters. As such, a range of ancillary
data were appended to the postcodes; the sources of which are sum-
marised in Table 1. In addition to assisting with description of each
cluster’s salient characteristics, this process had two additional benefits.
The first is external validation, in that the clusters should differentiate
logically between attributes of the built environment; and secondly, as
an indicator of those types of contextual features that are well
discriminated through the process of applying the CAE to satellite data
of the specified resolution.

For the attributes extracted from the identified ancillary data we
computed index scores that compare either the proportion or rate within
a cluster to the national average. These scores are standardized so that
100 equates to the national average, 50 would be a half and 200 double.
A tabular representation of the scores, shaded by their relative pro-
pensity are shown in Fig. 10. These scores in addition to maps of the
clusters were used to generate Group labels and descriptions that are
presented in Table 2.
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The results present a range of salient attributes found within each
cluster; illustrating the potential utility of CAE when building classifi-
cations aiming to differentiate context. Out of all the Groups presented,
perhaps the least well differentiated were locations defined as “D: Rural
Residences” and “E: Rural Properties and Farms”. These had quite
similar profiles based on the ascribed attributes, however there were
differences when mapped; notably “D: Rural Residences” tended to
contain buildings that were more clustered; and “E: Rural Properties and
Farms” also included more farm locations. For simplicity we have left
these clusters as presented, but a more parsimonious classification might
be returned if such clusters were manually merged.

A further observation on the overall shape of the classification is that
aspects of morphometric structure are differentiated by the identified
clusters; notably 4-way junctions and cul-de-sacs. Although such mea-
sures likely correlate to other features of context identified by the CAE, it
is none the less encouraging to see that these differences were observed;
and we would argue that this indicates potential for higher resolution
imagery revealing richer measures of street density / complexity.

Finally, in framing the utility of the created classification, and the
general approach of using CAE for the derivation of contextual mea-
sures, it is also important to explore their limits. The output of the CAE is
framed here as our best attempt at capturing the characteristics of
postcode context as represented by the input image taken from the
specified satellite data. As outlined earlier in this section, the approach
maps reasonably successfully onto observed structures that differentiate
places. However, in more general tabular approaches to the analysis of
urban context such as geodemographic classification, fuller descriptions
tend to be provided through the inclusion of a wider array of variables
describing both the physical structure of places and the socio-economic
characteristics of their residents. Although outside the scope and
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Fig. 12. Two Postcodes that were both asigned into
Cluster B however from different deprivation profiles.
The 160 m contextual buffers are shown over ESA
Sentinel 2 (left) and Google satellite imagery (right).
Modified Copernicus Sentinel data 2021.

Map data ©2021 Google, ©2021 Bluesky, Bluesky,
Infoterra Ltd. & COWI A/S, Getmapping plc, Infoterra
Ltd. & Bluesky, Maxar Technologies, The Geo-
Information Group, Map data ©2021.

objectives of this work, elsewhere we have demonstrated where
remotely sensed data have shown utility in differentiating patterns or
urban socioeconomic structure (Arribas-Bel et al., 2017). Although such
work takes an alternative methodological approach, it is not clear that
our windowed approach as presented here is well suited to such pur-
poses; and as such we would argue for caution in drawing associations
beyond the scope of what can be identified from the data. For example,
Fig. 11 plots the rank distribution of postcodes within England by the
2019 Index of Multiple Deprivation (1 = the most deprived). Although
there are some differences, such as more rural clusters tending to be less
deprived than those in urban areas, there is much overlap. Despite the
objective of the approach used to generate the IMD being divergent from
the work presented in this paper, if the same comparative analysis was
completed with more traditional geodemographic classification, it
would be possible to see greater differentiation in such patterns, as these
typically include socio-economic measures.

Such lack of differentiation on this particular domain may very likely
be a constraint of the data resolution used for the classification. This is
illustrated in Fig. 12 by examining two postcodes found with values very
close to the mean of Cluster 1 within the Liverpool City Region: L18 9TS
is more deprived and found in the 3rd decile of the IMD, whereas L35
OPP is more affluent and ranked in the 8th decile. The built structure of
these areas are quite different, which can be seen on the right column
images, presenting the higher resolution remotely sensed data. L18 9TS
are local authority flats within an open greenspace plot, and L35 OPP are
Semi-Detached properties with private gardens. These are quite
different areas in terms of their socio-economic circumstances, but their
grouping into a single cluster is more understandable (as more visibly
similar) when true colour composites generated from the RGB source
data are compared (left column). We draw this comparison to illustrate
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the limits of what the presented work can show, and also the likely
potential for greater differentiation of social attributes if higher reso-
lution data were available and where these have association with
characteristics of the built environment.

5. Conclusions and directions for future research

In this paper we have introduced a new and novel method to extract
local contextual measures from Sentinel 2 satellite data following the
distribution of postcodes in Great Britain. Our methodology imple-
mented a CAE to produce a data-driven encoding of the context of 160 m
buffers around each unit postcode. This equated to 1,710,715 different
image inputs and the massive computational demands necessary to fit
the CAE model to these data required extensive use of GPU architecture.
Measures were extracted after the encoding phase of the CAE to reduce
the source data into 64 separate features representing different encod-
ings of the context of each image. The utility of these measures was then
demonstrated, through their input into a cluster analysis with the
objective of identifying those areas sharing similar salient contextual
characteristics. The final output of the model was 7 clusters, which were
mapped and described through a range of independent ancillary data.
Our produced representations complement alternative morphometric,
tabular and LULC approaches to the representation of urban form and
context.

Even with input data at the resolution of Sentinel 2 (10 m / pixel), the
autoencoder process through CNN was illustrated to be extremely sen-
sitive; requiring tspatial smoothing of the raw outputs to limit unhelpful
heterogeneity. Some of this variability related to how context was
conceptualised in this study: notably through a 160 m square buffer
around each postcode. This zone was fixed for all postcodes as a
requirement of the CNN for a Tensorset comprising of tensors of uniform
size and shape. Furthermore, although the zone chosen for this study
might be contracted to reduce the contextual extent, through experi-
mentation we found that this had quite negative effects on the model
performance as there were much less data upon which the CNN could
learn structure. We argue that this presents an interesting case of the
Modifiable Areal Unit Problem as the success of the analytical technique
itself are directly related to the zoning and scale of the input data used,
not just the representations presented. Although outside the scope of this
study or the potential of those input data utilised, it would be possible
with higher resolution data to explore these effects systematically.
Moreover, the CAE demonstrated that it could learn structure from the
data that are presented, which in this application was a very large corpus
of images for the national extent. As with many machine learning al-
gorithms, CAEs are able to learn more accurate representations of un-
derlying structure when presented with larger volumes of data,
assuming all other things are constant, such as the quality of the data. As
such, in future work, we argue that there is also a need to explore the
extent to which overall model performance might be impacted by a more
constrained geographic extent and reduced data input, and how such
effects might also interact when also presented with different resolutions
of input data. Such issues would also warrant investigation in associa-
tion with a need for spatial weighting as was applied here, or whether
other types of weighing schemes or approaches impact model
performance.

Overall we are very encouraged by the results of this study, as the
CAE outputs demonstrated clear utility for the differentiation of contexts
when these were integrated into a cluster analysis. The output of the
CAE themselves are however data driven and so need further ancillary
data to make sense of these representations and ascribe their limits. The
example of socio-economic differentiation was presented to illustrate
this point; but also highlights potential for the outputs of the model
presented here to be combined with other available data to create richer
profiles of areas; perhaps as input to fuller and more comprehensive
geodemographic classification.
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