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A B S T R A C T

Transit-Oriented Development (TOD) is a widely recognised planning strategy for encouraging the use of mass
and active transport over other less sustainable modes. Typological approaches to TOD areas can be utilised to
either retrospectively or prospectively assist urban planners with evidence-based information on the delivery or
monitoring of TOD. However, existing studies aiming to create TOD typologies overwhelmingly concentrate
input measures around three dimensions of: density, diversity and design; which might be argued as not ef-
fectively capturing a fuller picture of context. Moreover, such emphasis on static attributes overlooks the im-
portance of human mobility patterns that are signatures of the dynamics of cities.
This study proposes a framework to address this research gap by enhancing a conventional TOD typology

through the addition of measures detailing the spatiotemporal dynamics of activity at transit stations; im-
plemented for the selected case study area, New York City.

1. Introduction

Transport Oriented Development (TOD) is considered as a type of
sustainable urban development focusing on encouraging transit rider-
ship through providing high density and mixed-use development within
walking distance (e.g. 400–800 m; or 5–10-min walk) of public trans-
port facilities (Thomas et al., 2018). The main objective of TOD ad-
vocates delivering a favourable environment consisting of urban forms
that are highly compact, of mixed-use, pedestrian- and cycling-friendly,
and develop neighbourhoods with the vicinity of public transport hubs
(i.e. transit stations). Such influences are commonly within a frame-
work referred to as the ‘three-Ds’: namely, high density in development,
diversity in land use and good urban design (Cervero and Kockelman,
1997). This development pattern has been widely recognised and ac-
cepted as a leading planning strategy by most planning agencies around
the world, exemplified by extensive cases in North American and Eur-
opean cities (Lierop et al., 2017; Staricco and Brovarone, 2018), China
(Xu et al., 2017), South Korea (Sung and Choi, 2017) and so forth.

TOD principally aims to address common urban transportation
challenges associated with automobile dependence, such as traffic
congestion and parking difficulties, air quality and noise pollution,
excessive greenhouse gas emission, public health and wellbeing-related
issues (Rodrigue, 2017; Chavez-Baeza and Sheinbaum-Pardo, 2014;
Ettema et al., 2016; Hickman and Banister, 2014; Hynes, 2017; She

et al., 2017). Although urban planners have adopted a series of actions
aimed at reducing the dependence of private automobile use through
encouraging more sustainable alternatives including public transit and
active travels (i.e. walking and cycling) (Lee et al., 2013; Winters et al.,
2017), TOD presents a focus for more comprehensive planning solu-
tions since it effectively integrates both urban land use and transport
system planning (Lee et al., 2013; Taki et al., 2017; Papa et al., 2018).

Although TOD can be argued as consistent in its prescriptions for
policy-making and planning, extensive studies have illustrated that for
TOD to be successful, there is a necessity to be highly sensitive to local
specificities. For the purposes of assisting urban planners in establishing
new TOD or evaluating existing TOD, context-based TOD typologies
have been implemented to differentiate various station catchment areas
(Kamruzzaman et al., 2014; Higgins and Kanaroglou, 2016; Lyu et al.,
2016; Papa et al., 2018). Existing studies have overwhelmingly differ-
entiated TOD through measures related to the ‘three-Ds’ such as land
use mix, residential and commercial density, and floor area ratio.
However, other aspects of context, such as socioeconomic variables are
neglected (Higgins and Kanaroglou, 2016). Moreover, such static at-
tributes overlook the dynamic context of TODs, namely, human's mo-
bility, which as others have shown also plays a vital role in the evo-
lution of urban morphologies and functional regions (Wang et al., 2017;
Xia et al., 2018).

It is within this context that we expand upon the existing literature
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to consider a more comprehensive definition of TOD through a broader
range of multidimensional inputs, including their dynamic context. A
new analytical framework is implemented here for the case study city of
New York City, USA. The paper proceeds first to present a literature
review of approaches used to build a TOD typology, followed by a
Systematic Literature Review (SLR) designed to identify variables
commonly considered as important drivers of differentiation between
TOD contexts. General information about the case study area is pre-
sented in Section 3, followed by a discussion of the range of station
catchment areas and a specification of data pre-processing of the 64
selected candidate variables. In Section 3.2, 472 subway stations are
categorised into a four-category TOD typology through the im-
plementation of a proposed methodology framework based on Self-
Organising Map (SOM). The groups are named and described according
to their salient characteristics. In Section 3.3, subway turnstile data are
utilised to capture human mobility patterns, using the same framework
to create Temporal Clusters featuring five featured travel patterns. In
Section 3.4, the two produced clusters are integrated to explore the
interaction between static and dynamic features of the TOD areas. Fi-
nally, the paper concludes with a discussion suggesting some future
work and limitations to the approach.

2. Literature review

There are multiple approaches to building a TOD typology, ranging
from the qualitative ascription of idealised TOD contexts (Lyu et al.,
2016; Higgins and Kanaroglou, 2016) to more quantitative frameworks
utilising models of TOD catchments and associated measures drawn for
within these areas (Higgins and Kanaroglou, 2016). TOD contexts
within the urban environment have been characterised in the literature
through various indicators/variables that are argued to have an effect
on (or be a result of) the use of public transport. Given the variable
definition of TOD extents, study objectives and locations, the specificity
of criteria and indicators selected as influential to TOD characteristics
vary between studies.

Following the development of TOD-related research, the concepts of
the original ‘three Ds’ model established by Cervero and Kockelman
(1997) has been expanded. For instance, Ewing and Cervero (2010)
added Destination accessibility, Distance to transit, and an additional
non-environmental variable, i.e. Demographics, to the family of ‘D
variables’, formulating the ‘five Ds’ concept. These concepts were uti-
lised within a Systematic Literature Review (SLR) to identify those TOD
related measures used in the recent literature. We utilised the Scopus
(https://www.scopus.com/), Google Scholar (https://scholar.google.
co.uk/), and Web of Science (https://wok.mimas.ac.uk/) referencing
databases and looked for references published between 2009 and 2018.
These databases were queried for research in the broadest sense, in-
cluding journal articles, official documents, guidelines, and so forth;
which either created a TOD typology (or indexed TOD features) for
major transit stations or focused on analysing the relationship between
multidimensional variables around stations and ridership of public
transit more generally. Scopus returned 15 studies, the Web of Science
and Google Scholar respectively identified 11 and 6240 results. The
studies were checked for diversity, both in terms of geographic context
(i.e. the location of the case study) and type (e.g. journal article, gov-
ernmental documents/policies); and secondly, the quality of the re-
viewed studies was considered in terms of the influence of the academic
studies (measured by the times cited) and the authority of the gov-
ernmental documents/policies.

Through this process, 29 studies were identified, and from these, a
set of common variables selected that are presented in Table 1. Al-
though many align with the ‘five Ds’, most of the studies are not
comprehensive in coverage of all domains of the ‘five Ds’. Moreover,
some of the variables employed in these studies do not align with the
‘five Ds’, implying broader or context-specific considerations. The
candidate variables could broadly be categorised into four domains,

namely, Land Use and Built Environment, Location and Accessibility,
Socioeconomic and Demographic, and Transit-related.

Input to the Land Use and Built Environment, and Location and
Accessibility domains were drawn from a range of sources including the
Census and other public survey data, but also Points of Interest (POI)
databases either as supplements or alternatives to conventional land-
use measures (see Wang et al., 2016; Lyu et al., 2016; Wang et al.,
2017). These studies advocated that POI data may capture finer-grained
and more up to date information depicting the land use composition
and urban facilities. Moreover, other variables, such as the type of
dwelling, type of tenure, building height, building age, and average
travel time/distance to workplace/transit station, also take a relatively
large share of commonly-used variables in these two domains; which
may be as a result of their reasonably common availability and broadly
understood definitions.

Within the Socioeconomic and Demographic domain, typical vari-
ables identified from the literature included the median household in-
come, household vehicle ownership, educational attainment, and oc-
cupation type. As for demographic variables, the “seventh D" in D-
variables (the “sixth D" in D-variables is considered as demand man-
agement (Ewing and Cervero, 2010, 267)) mainly includes age com-
position and household size/type.

Transit-related attributes had high salience in the studies identified;
and indicators included measures such as daily/weekly ridership, fre-
quency of metro services, or peak passenger load/frequency in the
transit station. Although of utility, such measurements were typically
limited in temporal resolution (i.e., weekly ridership) or were some-
what static (e.g., morning peak ridership volume), and therefore only
had limited account for actual periodic variation in patterns of use.
Given that spatiotemporal data related to transit have become more
prevalent, some of the studies, such as Wang et al. (2016), Zhou et al.
(2017), Wang et al. (2017) and Kim et al. (2018), utilised attributes
from trip transaction data extracted from a smart card system to cali-
brate more real-time measures. In addition to transit flow data, human
mobility was also inferred by Wang et al. (2017) through mobile ap-
plication data from an online mapping system.

Within the Location and Accessibility domain, travel distance/time
from the transit nodes to the main working places are typically adopted
by many of the reviewed studies. Moreover, proximity to activities is
also a commonly used variable indicating the connectivity between
transit nodes and the surrounding environment. Perceived attributes
are also employed by some reviewed studies, such as cleanness and
safety of the transit station. However, due to the difficulty of quanti-
fying and data availability, most of the reviewed studies do not include
these types of variables.

3. Contextualising TOD: New York City

The case study area selected for this study is the New York City
(NYC), which is the most densely populated cities within the US with an
estimated 8.56 million residents distributed over a land area about
777 km2 (US Census Bureau, 2017). The city is located at the southern
tip of the state of New York on the US eastern seaboard, comprising five
boroughs, namely, Brooklyn, Queens, Manhattan, Bronx, and Staten
Island. The New York City Subway, first opened in 1904, is a rapid
transit system that offers 24/7 service across four of the five boroughs
of NYC (i.e. Manhattan, Queens, The Bronx, and Brooklyn), which is
controlled by the Metropolitan Transportation Authority (MTA). The
system spans 27 lines (665 miles of track) and 472 subway stations,
facilitating a major transportation mode for residents and visitors to the
city (MTA, 2016a, 2016b). According to the subway ridership statistics
provided by MTA, in 2016, an average of 5.65 million passengers used
the system daily on weekdays and about 5.75 million at the weekends,
making it the largest rapid transit system in the US and the seventh
busiest worldwide.
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3.1. Defining station catchment area and data pre-processing

Fundamental to any TOD typology is a definition of the contextual
area surrounding the transit stations. For this case study we selected an
area of 800 m (approximately 0.5 miles) which mirrored the majority of
studies conducted within the US (see Atkinson-Palombo and Kuby,
2011; Austin et al., 2010; Nasri and Zhang, 2014; Bhattacharjee and
Goetz, 2016). Although most of these studies employed a Euclidean
distance buffer (or circular buffer) to define the catchments of transit
station areas, it can be argued that a network distance buffer is more
suitable since it “more accurately representing the built environment as
experienced by someone walking through it” (Oliver et al., 2007, 8).
Fig. 1 illustrates 50 m-trimmed street network-based catchment areas
(800 m walking distance) of the NYC subway stations. A zoomed-in
inset map, on the upper left corner, shows an example circular buffer
and a network buffer at Metropolitan Avenue Station. It is clear that a
circular buffer area is less effective representation given the sur-
rounding street density and available paths to walk. Additionally, in
some other locations within a circular buffer, the walking distance is
longer than 800 m due to more facilitating urban structure, such as
block size. A more systematic discussion comparing the influence of
these two types of buffer are detailed in Oliver et al. (2007).

Moreover, two inset maps located on the right side of Fig. 1 high-
light a stretch of census blocks (the smallest geographic area for which
the US Census Bureau (2017) collects and tabulates census data) along
with their defined station catchment areas. Each catchment contains

census blocks, for example, the catchment area of Mets-Willets Point
station is formed by seven census blocks; Lefferts Blvd station catch-
ment intersects with 25 census blocks, which are converted into pro-
portion based on their area of overlap. The proportion is subsequently
used as a weight (wi) to calculate the weighted average value of selected
variables. Eq. (1) illustrates how these weights were used to calculate
values attributed to census block where they intersected with the
catchment areas.

= =

=
x

x w
w

( )i
n

i i

i
n

i

1

1 (1)

x is the weighted mean; xi is an original value; wi is the weight (i.e. the
proportion of the area occupied by a specific census block in station
catchment area).

For other variables at the finer spatial resolution, particularly spa-
tial points extracted from the NYCOD and NYCP (e.g. street trees, bus
stops), these were first aggregated to the station catchment areas where
they were located and either a density or percentage value calculated.

The selection of variables was primarily guided by findings from
Section 2 alongside further consideration of the quality and availability
of potential variables within the case study area. As such, variables
selected for this study were categorised into the four previously iden-
tified domains: Land Use and Built Environment, Transit-related, Lo-
cation and Accessibility, and Socioeconomic and Demographic. Vari-
ables representative of these domains were extracted from the following

Fig. 1. The New York City subway system and catchment areas (800 m walking distance) with highlights of census blocks.
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seven open data sources: American Community Survey (ACS) (https://
www.census.gov/programs-surveys/acs/); National Walkability Index
(NWI) (https://catalog.data.gov/dataset/walkability-index); Smart Lo-
cation Database (SLD) (https://www.epa.gov/smartgrowth/smart-
location-mapping); NYC Open Data (NYCOD) (https://opendata.
cityofnewyork.us/); NYC Planning (NYCP) (https://www1.nyc.gov/
site/planning/data-maps/open-data.page); and the Metropolitan
Transportation Authority (MTA) (http://web.mta.info/developers/
turnstile.html). Table 2 presents the final 64 variables selected for
this study alongside a brief description. After the selected variables
were assembled for each of the subway station catchment, the Box-Cox

transformation (Eq. (2); Box and Cox, 1964) was adopted to transform
non-normal variables values to approximate a normal distribution.
Furthermore, given that the assembled variables are measured on dif-
ferent scales, z-scores were implemented as a standardisation (Eq. (3)).
This frequently used technique creates a transformed variable with a
mean of zero and unit of standard deviation.

=
=

x
x

x

if
if

1

log

, 0;
, 0.i

i

i (2)

where xi′ is the transformed value; λ ranging from −5 to 5, which can

Table 2
Final variable selection and basic description.

Database Code Domain Variables title Description

ACS B01001 Socioeconomic & demographic Age: 0–4 % of Population aged between 0 and 4
Socioeconomic & demographic Age: 5–14 % of Population aged between 5 and 14
Socioeconomic & demographic Age: 15–19 % of Population aged between 15 and 19
Socioeconomic & demographic Age: 20–24 % of Population aged between 20 and 24
Socioeconomic & demographic Age: 25–44 % of Population aged between 25 and 44
Socioeconomic & demographic Age: 45–64 % of Population aged between 45 and 64
Socioeconomic & demographic Age: 65&above % of Population aged 65 and above

B08303 Location & accessibility TTtW: < 5 mins % of Workers whose travel time to work is less than 5 min
Location & accessibility TTtW: 5–14 min % of Workers whose travel time to work is between 5 and 14 min
Location & accessibility TTtW: 15–29 min % of Workers whose travel time to work is between 15 and 29 min
Location & accessibility TTtW: 30–44 min % of Workers whose travel time to work is between 30 and 44 min
Location & accessibility TTtW: 45–59 min % of Workers whose travel time to work is between 45 and 59 min
Location & accessibility TTtW: > 60 min % of Workers whose travel time to work is longer than 60 min

B11016 Socioeconomic & demographic HT: 1-person % of 1-person household
Socioeconomic & demographic HT: 2-person % of 2-person household
Socioeconomic & demographic HT: 3-person % of 3-person household
Socioeconomic & demographic HT: 4 + −person % of 4 or more person household

B15003 Socioeconomic & demographic EA: No school % of Population have no qualifications
Socioeconomic & demographic EA: Elementary school % of Population attained kindergarten to 5th grade
Socioeconomic & demographic EA: Middle school % of Population attained 6th to 8th grade
Socioeconomic & demographic EA: High school % of Population attained 9th to 12th grade
Socioeconomic & demographic EA: College/Bachelor % of Population attained College or Bachelor's degree
Socioeconomic & demographic EA: Master/Doctorate % of Population attained Master's or Doctorate Degree

B19013 Socioeconomic & demographic Median Income Household median income in the past 12 months
B25003 Land use & built environment Tenure: Owner % of Housing unit occupied by Owner

Land use & built environment Tenure: Renter % of Housing unit occupied by Renter
B25024 Land use & built environment US: Detached % of Housing unit categorised as detached

Land use & built environment US: Attached % of Housing unit categorised as attached
Land use & built environment US: Apartment % of Housing unit categorised as apartment (from 2 to 50 units)

B25034 Land use & built environment YB: 2010/Later % of Building built in 2010 or later
Land use & built environment YB: 2000–2009 % of Building built in between 2000 and 2009
Land Use & Built Environment YB: 1980–1999 % of Building built in between 1989 and 1999
Land use & built environment YB: 1960–1979 % of Building built in between 1960 and 1979
Land use & built environment YB: 1940–1959 % of Building built in between 1940 and 1959
Land use & built environment YB: 1939/Earlier % of Building built in 1939 or earlier

B24010 Socioeconomic & demographic OT: M.B.S.A. % of Workers in management, business, science, and art occupations
Socioeconomic & Demographic OT: S. % of Workers in service occupations
Socioeconomic & demographic OT: S.O. % of Workers in sales and office occupations
Socioeconomic & demographic OT: N.C.M. % of Workers in natural resources, construction, and maintenance occupations
Socioeconomic & demographic OT: P.T.M. % of Workers in production, transportation, and material moving occupations

B25044 Socioeconomic & demographic VA: No-vehicle % of Housing units have no vehicle
Socioeconomic & demographic VA: 1-vehicle % of Housing units have 1 vehicle
Socioeconomic & demographic VA: 2-vehicle % of Housing units have 2 vehicles
Socioeconomic & demographic VA: 3 + −vehicle % of Housing units have 3 or more vehicles

B01003 Land use & built environment Population Density Population density
NWI D4a Location & accessibility D4a Distance from the population-weighted centroid to the nearest transit stop (meters)
SLD D1c Land use & built environment D1c Job density

D2a_EpHHm Land use & built environment D2a_EpHHm Employment and household entropy
D3a Land use & built environment D3a Road network density
D4d Location & accessibility D4d Aggregate frequency of transit service per square mile

NYCOD CSCL Land use & built environment Intersection Density Street intersection density calculated from the street centreline
STC Land use & built environment Tree Density Street tree density
Bicycle Land use & built environment Bike Facilities Citi-bike, bicycle routes and parking shelters density
Bus Land use & built environment Bus Facilities Bus stops density
Parking Land use & built environment Parking Facilities Parking meters/lots density
POI Land use & built environment POI Point of interest data: contains seven land-use types

NYCP MapPLUTO Land use & built environment Landuse Land use: contains seven land-use types
MTA Turnstile Transit-related Turnstile: Entry Entry counts for all turnstile data by every 4 h per day

Transit-related Turnstile: Exit Exit counts for all turnstile data by every 4 h per day
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be estimated using the profile likelihood function to achieve ‘optimal
value’

=z x µ
i

i
(3)

where zi is the standardised value, xiis an original value, μ is the mean
of xi, and σ is the standard deviation from the mean.

3.2. Contextualising TOD

After the assembly of the normalised and standardised input data;
similarity in the context of subway stations was explored by the ap-
plication of a Self-Organising Map (SOM). The Self-Organising Map
(SOM), also known as Kohonen Map, is a single layer feedforward ar-
tificial neuron network, which is trained by unsupervised, competitive
learning as a tool for “visualisation and analysis of high dimensional
data” (Bação and Lobo, 2010, 4). The SOM translates high-dimensional
inputs into a low-dimensional space, also referred to feature map that is
configured by the number of pre-defined neurons arranged on a regular
lattice (e.g. a rectangular or hexagonal topology), through ‘fitting’ a
grid of nodes to the data over a fixed number of iterations. The resulting
map allows a graphical presentation of the data that can be easily

interpreted by map-readers, which can be further classified by the
machine learning techniques designed for low dimensionality (Bara
et al., 2018; Spielman and Folch, 2015; Natita et al., 2016). Numerous
studies have highlighted the utility of SOM for visualising complex,
nonlinear statistical relationships within high-dimensional data (Yin,
2008; Bação and Lobo, 2010; Das et al., 2016; Miljković, 2017). The
method is suitable for this application given the multiplex of measures
assembled. Moreover, even after the application of Box-Cox transfor-
mation, some variables remained not normally distributed, which may
have caused some problems if we directly adopted conventional feature
extraction methods such as principal components analysis (PCA), since
the underlying assumptions of these techniques are not satisfied (Das
et al., 2016). Accordingly, Demartines and Blayo (1992) note that the
SOM is not very sensitive to the normal distribution when the input
data contain high dimensionality.

Several studies have highlighted the potential applications of SOM
in terms of building typology for urban contexts (Jain et al., 2018;
Schäfer et al., 2018; Spielman and Thill, 2008; Arribas-Bel and Schmidt,
2013), and specifically within the context of TOD: Sohn (2013) pre-
sented an application of SOM for Seoul, South Korea, metro station
areas.

Several parameters need to be specified in advance when fitting a
SOM, including the number of neurons (M), the range of the learning
rate and its decline pattern (α), the shape/type of the neuron, and the
type neighbourhood function (Spielman and Folch, 2015). The first step
before training the SOM is to define an appropriate number of neurons
that are used to configure the network. A small feature map (i.e. the
number of observations far exceeds the number of neurons) results in a
generalisation, whereas a large map allows a specific location in geo-
graphic space (subway stations, in this study) to be projected to a
particular location in the corresponding attribute space, representing
specific properties (Spielman and Thill, 2008). A useful ‘rule of thumb’
(Eq. (4)) suggested by Tian et al. (2014), is employed here to determine
the number of neurons. Since the 472 stations configure the observa-
tions (N), 108 (M) neurons, projected on a 12 by 9 grid, are accordingly

Table 3
Result of SOM parameter settings for building TOD typology.

Test Topology/
Shape

Learning
rate type

Neighbourhood type Average QE Learning
rate range

1 Hexagon Linear Bubble 3.51 1.0–0.01
2 Hexagon Inverse Bubble 3.59 1.0–0.01
3 Hexagon Linear Gaussian 4.21 1.0–0.01
4 Hexagon Inverse Gaussian 4.79 1.0–0.01
5 Rectangle Linear Bubble 3.41 1.0–0.01
6 Rectangle Inverse Bubble 3.69 1.0–0.01
7 Rectangle Linear Gaussian 4.18 1.0–0.01
8 Rectangle Inverse Gaussian 4.75 1.0–0.01

Fig. 2. Clustergram for selecting number of clusters differentiating TOD Typologies.
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generated to structure the SOM. For the remaining parameters, these
were set following an objective of maximising SOM quality through
minimisation of the average quantisation error (QE) statistic. We tested
the value of QE generated by using various combinations of different
SOM parameters following Natita et al. (2016). The results of these
experiments are shown in Table 3, with the combination of a rectan-
gular topology, the bubble neighbourhood function and a linear decline
in learning rate (ranging from 1.0 to 0.01) resulting in the smallest
average QE (3.41). Thus, this combination of parameters is eventually
adopted to train the SOM network for creating spatial clusters.

M N5 (4)

Where M is the number of neurons, which is an integer close to the
result of the right-hand side of the equation and N is the number of
observations.

To reduce the complexity of the computed SOM feature maps fur-
ther, a hybrid hierarchical k-means (H-K-means) algorithm was applied
to aggregate the neurons into groups sharing similar attributes (Chen
et al., 2005; Kassambara, 2017). The procedure of this algorithm can be
summarised into three steps: firstly, agglomerative hierarchical clus-
tering is applied to the input data and generated tree (i.e. dendrogram),
which is cut into k number of clusters; secondly, the cluster centroids
(i.e. the mean value) are computed for each group; and finally, these

cluster centroids are utilised as the initial centres for the k-means al-
gorithm (Kassambara, 2017). To select an appropriate number of
clusters, a clustergram was created that demonstrates a weighted mean
of the first component of a PCA for each cluster centre across a range of
tested k values, where the width of each line represents the number of
observations (i.e. neurons in SOM). The detailed rationale of this
technique has been discussed elsewhere (see Schonlau, 2002); but
generally, the logic is to find the point where the centroids of the
clusters are as dissimilar as possible (well-spaced). According to the
clustergram shown in Fig. 2, it is easily observed that when the number
of clusters reaches four, the difference between cluster centroids (red
dots) is maximised (after k = 4, these centroids are getting close to each
other; when k = 5, two cluster centroids are nearly overlapped, in-
dicating relatively bad clustering results).

The result from clustering the 108 neurons is shown in a 2-dimen-
sional plane (Fig. 3) and is mapped in Fig. 4 portraying the geographic
distribution of TOD typologies for NYC. The geographic distribution
follows a broadly concentric circle-shape, radiating away from the
central area of Manhattan.

To ascertain the most salient characteristics of the clusters, index
scores (i.e. x/x̄ *100) were calculated for the input variables and dis-
played within each cluster in Fig. 5. These scores indicate the (over-)
underrepresentation of a target characteristic compared to the regional

Fig. 3. TOD typologies by SOM nodes (presented on a 12*9 grid).
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average value (i.e. a score of 100). An index score 50 would hence
equate to a rate that is half the average, and 200 would be double.
Utilising both the map and scores, descriptive profiles were generated.

3.2.1. Cluster 1: Commercial core
This cluster is characterised by commercial areas with a highly

educated (Master's or Doctorate) population, aged between 25 and 44,
including many of those who are employed in well-paid management,
business, science and arts occupations. Residents of such areas are more
likely to live in apartments (built after the 1980s) consisting of one- or
two-person households. These areas are characterised by an extremely

high job density, high level of traffic permeability, and plenty of public
services, commercial and mixed-use properties, accompanied with a
mature infrastructure for cycling and a high level of accessibility of
public transit.

3.2.2. Cluster 2: Blue-collar domicile
Residents of this typology have an age distribution closer to the

regional mean, who have increased prevalence to live with family in
rented apartments that are situated in areas with high population
density, forming a typical three-person household size. Many more of
these residents are likely to have occupations within the areas of service

Fig. 4. Geographic distribution of TOD typologies.

Fig. 5. Index scores by four TOD typologies.
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and production, transportation, and material moving sectors.
Additionally, the annual median income earned by residents of these
areas is much lower. The physical environment is characterised by
detached properties and apartment constructed in the 1940s and typi-
cally linked with adequate parking infrastructures.

3.2.3. Cluster 3: Young family residential
These areas are characterised by residential occupants with (pre-)

school-age children. Many residents live in the detached property lo-
cated in boroughs outside Manhattan. Given the distance of travel to
work (more than 60 min), the car dependency of these areas is higher
than the regional average, also demonstrated by the high household
vehicle availability.

3.2.4. Cluster 4: Older family residential
Populations living within this cluster can be broadly characterised

by college-educated middle-age residents (aged between 45 and 64)
who are likely to own a detached property built between the 1940s to
1970s and located on the periphery of NYC. Many residents live in
relatively large households with dependent children (aged from 5 to
19). Residents of this group show high use of private automobiles for
commuting, manifested by high levels of vehicle availability (two or
more cars) at more than four times the regional average.

3.3. Classifying temporal TOD dynamics

The space–time dynamics of TOD localities were considered through
subway turnstile data supplied by the MTA. This dataset provides a
variety of information on subway station entries and exits, organised
into four-hourly daily time bands (i.e. six intervals a day); with the
period 2015 to 2016 selected. The turnstile data was aggregated by
days of the week, and for each station (a station contains several
turnstiles) created 30 variables (six-time bands, five working days) for
entry counts and a further 30 variables for exits. To provide further
insight into those stations sharing similar patterns of transit use, the

analytical framework applied earlier to station contextual data was
replicated for the subway turnstile ingress and egress. This included the
data pre-processing (e.g. normalisation and standardisation), alongside
SOM construction and clustering. A clustergram was again used to se-
lect an appropriate number of clusters (see Fig. 6), with k = 5 selected.
These ‘Temporal Clusters’ are mapped in Fig. 7.

To ascertain the most salient characteristics of the clusters, a further
set of index scores were created for the temporal clusters, using the
method previously described in Section 3.2. A series of heatmaps show
these scores in Fig. 8 for the five Temporal Clusters. Utilising both the
map and scores, descriptive profiles were generated from these insights.

3.3.1. Cluster 1: Typical work-oriented
Stations within this cluster are mainly located in the Lower and

Midtown areas of Manhattan, downtown areas of Brooklyn and Long
Island City. They feature a typical ‘double-humped’ (morning and
evening) subway travel pattern associated with workplace-oriented
usage. In the morning peak, low inbound passenger flow is identified
accompanying with a high outbound flow; while during the evening
peak, stations have high inbound flow and a low outbound flow. The
role of these stations switches during workdays: from a ‘major desti-
nation’ in the morning to ‘major origin’ in the evening.

3.3.2. Cluster 2: Home-work mixed
Stations classified by this cluster are mainly located outside

Manhattan, featuring a mixed subway travel pattern. During the
morning peak and even earlier, stations exhibit a high volume of in-
bound passenger flows and a high volume of outbound flows.

3.3.3. Cluster 3: Entertainment and work
Stations within this cluster are predominantly located in either

Downtown or Midtown Manhattan, occupying more than half of
subway stations in Manhattan. These stations meet a low inbound and
high outbound passenger flow during the morning but reverse this
pattern during the evening. Moreover, there is additionally a large

Fig. 6. Clustergram for selecting number of clusters differentiating temporal clusters.
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volume of inbound flows during the midnight-to-late-at-night period,
which may e a result of these destination being the popular place of
departure from evening events.

3.3.4. Cluster 4: Off-peak average
Stations of this group are distributed reasonably randomly across

New York. This cluster also consists of stations exhibiting moderate
levels of passenger flow, which are very close to the average. More
generally, these are less popular stations and experience fewer pas-
sengers during commuting peak periods.

3.3.5. Cluster 5: Typical home-oriented
Although a fraction of stations from this group can be identified in

the northern part of Central Park, most stations are located outside
Manhattan (especially in the periphery of NYC). These stations also
experience the ‘double-humped’ travel pattern, however, high inbound
and low outbound passenger flow during the morning peak, with the
reverse during the evening.

3.4. Integrating context and space-time dynamics

An overarching purpose of this work has been to extend an existing
framework for the creation of TOD typologies to examine both context

and dynamics. As such, in this section, we explore the intersection of
our two created classifications. Fig. 9 presents an alluvial diagram
showing the proportion of subway stations categorised at the intersec-
tion of these two classifications for the NYC extent. There is reasonable
consistency between these two classifications with some emerging dif-
ferences.

As might be expected, stations with their context classified as
‘Commercial Core’ predominantly correspond to ‘Typical Work-
Oriented’ and ‘Entertainment & Work’ temporal clusters, manifesting
typical workplace-oriented function of these TOD areas. Similar tem-
poral patterns can be observed in those stations categorised as ‘Blue-
Collar Domicile’ which splits between ‘Typical Home-Oriented’ and
‘Home-Work Mixed’ which might be expected given more residential-
oriented usage.

TOD areas categorised as ‘Young Family Residential’ unsurprisingly
predominantly correspond with the temporal cluster ‘Typical Home-
Oriented’ and ‘Home-Work Mixed’. Stations are both major origins and
destinations during peak times, which may be a result of proximity to
local employment centres or schools. Given that many of the residences
of this cluster are students, the high volume of (early-) morning peak
flows may partially be explained by educational establishment opening
times.

Within TOD stations classified as ‘Older Family Residential’, there is

Fig. 7. Geographic distribution of temporal clusters.
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correspondence to the temporal clusters ‘Home-Work Mixed’ and ‘Off-
Peak Average’. There are likely demographic drivers of these patterns
alongside a higher rate of private vehicle ownership as a result of their
more suburban locations.

4. Conclusion

Transit-Oriented Development (TOD) is a widely recognised plan-
ning method for tackling transport-related challenges. Typological ap-
proaches to TOD can be utilised either retrospectively or prospectively
to assist urban planners with evidence-based information on the de-
livery or monitoring of TOD. However, most existing studies creating
TOD typologies have overwhelmingly relied upon inputs selected
alongside the ‘three Ds’ or the ‘five Ds’ principles, which might be ar-
gued as not capturing effectively multidimensional aspects of context
alongside dynamics of such areas through human mobility. This study
proposed and implemented an analytical framework to address this
research gap by enhancing a conventional TOD typology with a wider
array of contextual data, while also considering the spatiotemporal
dynamics of activity at transit stations.

Our presented contextual TOD typology was implemented with
candidate data inputs gather through systematically reviewing 29 re-
cent studies related to TOD typology. The ‘five-Ds’ principles were en-
riched through various measures that were broadly categorised across
four domains: Land Use and Built Environment, Transit-related,
Location and Accessibility, and Socioeconomic and Demographic. Four
salient TOD clusters were generated for the case study city of NYC, by
applying a methodology framework formed by the combination of Self-

Organising Map (SOM) and hierarchical k-means clustering (H-K-
means) to the multidimensional input data. These clusters were further
named, described and mapped.

The spatiotemporal dynamics of activity at transit stations was
considered through subway turnstile data from the MTA. Through the
second application of the proposed framework to the temporal dataset,
472 subway stations were classified into five unique clusters respec-
tively representing different types of travel activity.

The contextual TOD typology was then enhanced through linkage
with the classification of aggregate space-time dynamics to illustrate
the interaction between context and use. Through cross-validation there
was much consistency unveiled, for example, the work-oriented stations
are mainly corresponding to the stations located in major employment
centres.

One of the main limitations of this study relates to the temporal
resolution of the subway turnstile data. The 4-h temporal interval
adopted by MTA to aggregate the passenger flows is limited in granu-
larity and may mask valuable details should more disaggregate data be
made available. In other contexts, researches such as Liu and Cheng
(2018) and El Mahrsi et al. (2014) have utilised smart card data to
conduct the travel pattern analysis, which brings finer resolution for
both boarding and alighting information. However, such data or similar
products were not publicly available from MTA. Secondly, due to data
limitations of this contextual area, this study did not consider multi-
modal journeys which may also offer insight as the ability to inter-
change to other transit modes has been spotlighted by many of the
reviewed studies (Chorus and Bertolini, 2011; Zemp et al., 2011;
Dirgahayani and Choerunnisa, 2018). Although the present study

Fig. 8. Inbound and outbound index value of five Temporal Clusters (presented in a ‘weekly travel profile’ manner). In order to achieve better visualisation result, all
values less than 100 (less than the mean value) are presented by white.
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employed variables, such as bus stop density, parking facilities, and
bike facilities, to attempt to represent the intermodal connectivity,
these variables were relatively ‘static’ compared to the data that could
infer mode swapping. None-the-less, despite such caveats, this paper
has demonstrated a new and powerful technique that implements an
innovative methodology to extend a TOD typology to represent both
context and dynamics; and will likely be a useful framework for ap-
plication within other urban contexts.
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