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A B S T R A C T

Visual characteristics of leisure and retail environments provide sensory cues that can influence how consumers experience and behave within these spaces. In this
paper, we provide a computational method that summarises the “visual features” of shopping districts by analysing a national database of geocoded store frontage
images. While the traditional focus of social scientific research explores how drivers such as proximity to shopping environments factor into location choice decisions,
the visual characteristics that describe the enclosing urban area are often neglected. This is despite the assumption consumers translate visual appearance of a retail
area into a judgement of its functional utility which mediates consumer behaviour, patronage intention and the image a retail location projects to passers-by. Such
judgements allow consumers to draw fine distinctions when evaluating between competing destinations. Our approach introduces a deep learning model known as
Convolutional Autoencoders to extract visual features from storefront images of leisure and retail amenities. These features are partitioned into five clusters before
several measures describing the environment around the leisure and retail properties are introduced to differentiate between the clusters and assess which variables
are distinctive for particular groupings. Our empirical strategy unpacks different groupings from the clusters, which implies the existence of relationships between
visual features of shopping areas and functional characteristics of the surrounding urban environment. Ultimately, using the example of retail landscapes, the core
contribution of this paper demonstrates the utility of unsupervised deep learning methods to research questions in urban planning.

1. Introduction

Visual characteristics of urban spaces drive how individuals eval-
uate and experience their surroundings for the purpose of location
choice behaviour and patronage decisions (Hauser & Koppelman,
1979). In the The Image of the City, Kevin Lynch argues the built en-
vironment can be drawn as “mental maps” that describe how the city is
read visually by cues such as shapes, sizes and colours (Lynch, 1960).
Not only this, Silver and Clark (2016) argue the actions, tastes, and
traits of individuals create and support particular meanings attached to
places. The measurement of a scene assesses the character of a parti-
cular place and highlights distinctive visual aspects of the built en-
vironment. As visual (but subjective) measures that describe scenes
such as liveliness are hard to quantify with traditionally-available data,
urban planners typically resort to building indicators that are based on
more directly observable characteristics such as population density
(Glaeser and Gottlieb, 2009) or street layout (Jung et al., 2017). Often
representations that characterise the scenes of streets are inferred using
visual audits conducted by researchers who collate data to explore si-
milarities and differences of physical attributes visible from street-level
– the quality of building facade, the presence of street art, or the con-
dition of sidewalks, for example (Bader et al., 2017). Once aggregated,
researchers can unpack relationships exploring the link between

particular visual attributes of built environments and characteristics of
the surrounding area. For retail environments, the visual image that
shopping areas project to consumers is a function of a broad range of
influences which affect patronage behaviour and consumer experiences
(Bell, 1999). Retail area image is a multidimensional concept and to
understand it requires unpacking the multitude of functional and visual
characteristics that consumers associate with shopping areas (Baker
et al., 1994). These characteristics are stimuli that influence consumer
perception and, by extension, patronage intention for particular retail
environments. Typically measures of retail area image are derived using
survey approaches that rate characteristics such as the quality of
building materials, the attractiveness of shop signage and overall en-
vironmental cleanliness (Bellizzi et al., 1983; El-Adly, 2007). As con-
ducting in-person studies in shopping areas to record this data requires
a high level of human judgement, they are cost-intensive and limited in
the throughput required to construct visual descriptors of retail en-
vironments for large study areas

To circumvent the scalability issues of manually auditing a national
sample of retail locations, we apply Convolutional Autoencoders (CAEs)
to automatically extract visual features from images showing the
frontage of leisure and retail properties across England and Wales.
Particular interest on street-level imagery for leisure and retail ame-
nities stems from their influence to the vibrancy of places and, hence, in
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the characteristics of the urban hierarchy (Dennis et al., 2002). While
previous studies have shown that proximity to leisure and retail ame-
nities factor into location choice decisions and patronage of retail en-
vironments (Glaeser and Gottlieb, 2009), the visual characteristics that
describe the urban environment around the point of interest are ne-
glected. Such approaches assume a “vacuum” around single amenities,
which ignores the environmental context that surrounds these premises.
As an example, the visual characteristics of a street with a restaurant
accessible by several modes of transportation is likely to differ by the
amount of liveliness when compared with another restaurant serviced
in a location with no transport links. Capturing visual features of leisure
and retail amenities allows an exploration into whether aspects of what
we see are related to particular characteristics of the built environment
that describe the amenities location. By clustering visual features ex-
tracted from the CAE, the principal contribution of this paper uses deep
learning to assess whether visual-only features of retail landscapes
correlate with observed characteristics of built environments, and
whether there are distinctive characteristics for particular groupings.

The remainder of the paper is organised as follows. Section 2 mo-
tivates the underlying conceptual framework of the paper. Section 3
introduces the sources of data we utilise through the study, before de-
scribing the modelling approach we implement to arrive at our em-
pirical objective. Section 4 presents the main findings. Finally, Section 5
concludes the paper.

2. Background and motivation

2.1. Visual characteristics of built environments

In the Critique of Judgement Immanuel Kant first observed aesthetic
perception as a self-organising process that drives how individuals react
to different environments (Kant, 1790). Not only do humans perceive
their environment as neutral facts and data, but we react to distinctive
aesthetic cues encoded in our surroundings that change how these
spaces are experienced as we walk through them (Silver and Clark,
2016). Our judgement of the elements in our surroundings are rendered
as a totality, independent of the constituent parts. When we stroll
through a “hip neighbourhood”, the avant-garde feel, boutique stores,
and DIY atmosphere are not perceived as independent objects. This is
because they collectively recall a particular way of behaving that is
adopted from the tastes and preferences derived from the environment
the individual chooses to surround themselves with (Merleau-Ponty,
2004). Thus, an environmental psychology influences how preferences
for certain environments are driven by a multitude of interwoven fac-
tors. Jane Jacobs recognised this as early as 1960, emphasising the role
streets perform in setting the visual scene of cities. In a critique of
modernist planning policy, Jacobs (1961) argued that unifying design
elements of urban spaces is short-sighted, as the interplay of their “bits
and pieces” are central to supporting the diverse excitement that street
scenes offer.

Visual cues are seen as discriminative features that influence per-
ceptions and evaluations of urban spaces, and even when considering
socio-cultural biases in aesthetic judgement, have been shown to affect
the psychological state of their inhabitants (Quercia et al., 2014).
Kelling and Coles (1997)’s Broken Windows Theory, for example, sug-
gests cues of environmental disorder in urban appearance such as
abandoned cars, litter, and vandalism drive a perceived breakdown of
social order which, in turn, induce more severe forms of criminal ac-
tivity. Beyond disorder places deviate from conventional form by ap-
pearing, amongst other things, transgressive, glamorous, or informal
(Silver and Clark, 2016). Thus, a suite of evaluative dimensions are
considered when characterising the visual attributes of urban spaces,
with different environments reflecting different visual representations
of tastes and values. Not only this, Massey (1991) argues these parti-
cular spaces are not static, but have multiple identities that are forged
by ever-changing social interactions occurring between people within

them. All together, these considerations highlight the complexities of
capturing a signal that reflects the visual qualities of street scenes.

2.2. Traditional approaches for describing retail environments

As aesthetic descriptions of urban environments such as glamorous,
lively or conventional are difficult to measure directly, urban scientists
typically fall back to constructing indicators of the qualities that de-
scribe spaces such as shopping areas (Silver and Clark, 2016). In-person
visual audits strive to unpack how the functional, physical and social
characteristics of retail environments correlate to affective outcomes
such as store patronage and location choice decisions. Survey techni-
ques have an extensive history in urban planning research, and borrow
from psychometric measurement models to infer latent traits through
an aggregation of single items visible across the audit (Bader et al.,
2017). In UK planning discourse, for example, concepts such as vitality
and viability have long underlined ‘health checks’ of town centre areas,
reflecting arguments in Jacobs (1961) that thriving places maintain a
diverse range of uses, attract significant numbers of people, and sustain
a continuing ability to attract investment (Ravenscroft, 2000). Thus,
vitality and viability is typically inferred by aggregating multiple items
such as pedestrian counts, diversity of amenities, or boarded-up win-
dows that are sampled at points across different retail locations. In the
retail literature, several examples aggregate sets of measures to describe
visual characteristics of shopping spaces. Bell (1999), for example,
shows environmental stimuli such as appealing store colours, attractive
shop signs and fashionable product ranges constitute a ‘visual amenity’
that inspires consumer willingness to patronise a shopping environ-
ment. Moreover, El‐Adly (2007), finds attractiveness attributes of
shopping malls such as luxury, comfort and convenience drive different
patronage motives amongst different shopper segments in UAE.

Survey-based approaches are often required to describe the visual
properties of urban environments due to the absence of accessible and
high coverage quantitative data (Salesses et al., 2013). Traditionally,
studies are undertaken by relying on a mix of personal interviews,
street-level observations of visual appearances, and annotated video
recordings by experts (Quercia et al., 2014). This manual review of
material is an arduous task however, and requires considerable col-
lective effort to distinguish amongst the variety of visual cues encoded
in the images.

2.3. Deep learning approaches for describing urban environments

To evaluate visual characteristics of particular places, Convolutional
Neural Networks (CNNs) that are ‘trained’ with human-labelled images
of street scenes are increasingly used to automate the classification of
the scenes presented by built environments. This new body of literature
has been punctuated by emerging access to new sources of data that
have been released by commercial providers and photo-sharing web-
sites in open formats (Arribas-Bel, 2014). Providers such as Google
Street View (GSV) and Flickr have opened up access to street-level
imagery for researchers through Application Programming Interfaces
(APIs), which have, in turn, been used to construct modern crowd-
sourcing platforms for collecting millions of user perceptions about
particular places. Large quantities of human-labelled, street-level ima-
gery have been used for training computer vision techniques. Zhang
et al. (2018), for example, use a deep learning based approach to pre-
dict perceptions of neighbourhoods in Bejing, China along six percep-
tual indicators of safe, lively, boring, wealthy, depressing, and beau-
tiful, before investigating which visual elements correlate to a
particular perception. The study used street-level images collated by
MIT Media Lab as part of the “Place Pulse” program, which by fall 2018
had collected 1,566,218 pairwise comparisons between 110,988 street-
level images from 56 cities worldwide (Dubey et al., 2016). This
crowdsourced data was made publicly available by Salesses et al.
(2013), who originally used it to understand the effect of the built

S. Comber, et al. Landscape and Urban Planning 202 (2020) 103887

2



environment’s visual features on perceptions of safety, class and un-
iqueness in the cities of New York and Boston in the United States, and
Linz and Salzburg in Austria. Additional studies that use labelled GSV
images include Liu et al., (2016), who detect shifts in city identities and
urban form for 26 cities from Europe, Asia, and North America.
Seresinhe et al., (2017) trained machine learning models on 217,000
crowdsourced images from the “Scenic-Or-Not” online game that rates
outdoor, natural environments on an integer scale (1–10) of its scenic-
ness, and explores questions that ask which types of greenspaces are
perceived as beautiful.

Unfortunately, a drawback of these supervised methods are the
large sample sizes required to train the network which are often un-
fulfilled in real-life applications. Moreover, these approaches typically
utilise a large, non-expert workforce (voting on crowdsourcing plat-
forms) to construct massive volumes of labelled image data. This cre-
ates several challenges. Principal amongst these is the balancing be-
tween maintaining a swift and economical annotation process while
ensuring the collected labels are accurate (Sorokin and Forsyth, 2008).
More importantly, the user’s interaction with the labelling task may be
influenced by socio-economic and demographic factors. As urban ex-
periences are highly socially constructed, different groups might engage
with the built environment in different ways, meaning visual char-
acteristics are highly particular to various socio-economic or demo-
graphic groups (Quercia et al., 2014). These challenges exist because
CNNs are supervised, meaning they require the network to be shown
labelled instances of images for learning the nuances between parti-
cular predicted outputs. An alternative approach to extracting features
from street-level imagery are Convolutional Autoencoders (CAEs). CAEs
are unsupervised approaches meaning they provide a self-organised
means for learning the relationships between elements in the data
without being shown labelled inputs. CAEs are advantageous because
they provide a less data-intensive alternative to CNNs that does not
require the user to assemble large quantities of labelled data for
training the network.

2.4. Application of computer vision methods to retail environments

While many studies that apply deep learning have focussed on
urban environments, to our best knowledge, no application of deep
learning to explore visual characteristics of retail environments cur-
rently exists in the literature. This is despite the high suitability of
computer vision methods for characterising the variance in image at-
tributes between different shopping areas. Consumers with little ex-
perience of a store or environment may use perceptual qualifications of
image, in addition to prices, as a proxy for the quality of goods and
service provision (Bell, 1999). Stimuli that influence consumer per-
ceptions of shopping area image are functional qualities but also the
aura of psychological attributes aroused by the environment. Func-
tional characteristics include convenience and accessibility of store or
retail area location, parking availability, the range of stores and pro-
ducts offered, and proximity to residential neighbourhoods and work-
places (Baker et al., 1994; Chebat et al., 2010). Psychological char-
acteristics relate to the “visual amenity” experienced by consumers in
shopping environments. For example, previous research links store
patronage decisions to visual elements such as architecture, shop sig-
nage and exterior design (Baker et al., 1994), but also factors such as
cleanliness and even colour of store premises (Bellizzi et al., 1983).
Thus, quality inference for shopping areas is a function of multiple
influences that affect consumer decision-making choices.

Given the wealth of research that has already linked image attri-
butes of shopping areas to consumer patronage, the focus of the present
study moves away from an exploration of footfall. Instead, our main
research direction focuses on characterising the different visual re-
presentations of shopping environments by functional attributes that
describe the area in which the premise is located. In synthesis of these
two attributes, we unpack different representations of the scene that

particular shopping environments project to passers by. The “scene” of
an environment reflects both the visual characteristics and configura-
tion of leisure, services, retail and cultural life, and data describing
amenities such as leisure and retail premises are windows that allow
researchers to unpack these configurations (Silver and Clark, 2016). An
understanding of different scenes from leisure and retail environments is
an important exercise because it unpacks patterns of urban human ac-
tivity and function. This is useful information for retail planners and
urban management schemes because it raises awareness of attributes
and image among particular areas. Public or private sector agencies
might utilise this to rationalise investment decisions that allocate spend
to promotional activities and place marketing campaigns for building
the profile of shopping environments (Page and Hardyman, 1996).

The visual design of retail environments are among the tools used to
enrich the consumer shopping experience. Visual design of shopping
areas has been manipulated previously to evoke desirable responses,
such as arousal and pleasure which triggers approach behaviour and
supports store positioning (Ballantine et al., 2010; Baker et al., 1994).
Yet the visual design of retail environments in the UK is highly parti-
cular, and so consideration to its nuances is required for understanding
potential implications to our applied methods. One limitation in ap-
plying computer vision methods to UK high street environments is a
phenomena known as clone towns (Ryan-Collins et al., 2010). The idea
of ‘cloned’ streets relates to the loss of identity and local character when
chain stores come to homogenise high street environments at the ex-
pense of independent stores (Carmona, 2015). The implications for
computer vision approaches concern the difficulty in identifying dif-
ferent typologies where no unique characteristics are directly ob-
servable from the images when they broadcast no local distinctiveness.
Despite the British Retail Consortium (2009) arguing there have been
calls for communities to reclaim their local high streets through the
encouragement of local spending, it remains that a large number of
distinctive facades constructed from local building materials may have
been exchanged by identical glass, steel and concrete frontages (Ryan-
Collins et al., 2010). This potentially limits the discovery of more in-
teresting, diverse and distinctive types derived from empirical exercises
that use street-level imagery from UK high streets. Despite this limita-
tion, for wider study areas than would be permitted by in-person audits,
computer vision approaches allow us to unpack how visual features of
leisure and retail properties relate to functional characteristics of
shopping environments, and consequently, how we can characterise the
scenes these places offer.

3. Empirical strategy

Our approach to explore differentiation between visual features of
leisure and retail premises is three-staged. Firstly, we extract visual
features from images of leisure and retail premises using a computer
vision algorithm. Secondly, we partition visual features into a sensible
number of clusters using a bottom-up classification strategy. And
thirdly, to differentiate between the clusters, we introduce variables
that describe characteristics derived from the point of interest around
the properties.

3.1. Data

To implement the methodological approach we require two prin-
cipal sources of data described below. Our first source of data are street-
level imagery of 314,542 retail, service and leisure properties across
England and Wales. These images display the front exterior of the
property that face onto the adjacent street or open space. Exterior
images were collected by a large pool of surveying teams equipped with
hand-held cameras from the Local Data Company (LDC) in 2015.
Sample images are displayed in Fig. 3.1, and are categorised row-wise
by several variables introduced in Table 3.1. As a pre-processing step,
each JPEG image is resized from × ×800 400 3 to a × ×224 224 3 pixel
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image for compatibility with the applied neural network architectures,
before normalizing the RGB values (0–255) to a 0–1 range. These re-
sized, normalised digital images are the 3-dimensional inputs (width,
height, and colour channel) to the convolutional neural networks we
introduce in Section 3.2.

While this data offers new opportunities, there are limitations of
using street-level imagery for visual audit purposes. Channels that af-
fect perceptions of built environments such as sound and smell are
absent from pictographic representations, and so cannot be directly
evaluated from the image (Salesses et al., 2013). Similarly, small items
less visible to the human eye that vary over short periods such as litter,
drug paraphernalia, broken glass, or cracked sidewalks are difficult to
measure given street-level imagery represent a single snapshot in time
(Bader et al., 2017). More specifically, given the principle concern for
the LDC surveying teams was to photograph facade features of the store
premises, measures related to sidewalks such as number of parked cars
or shrubbery might be partially occluded in the image, despite

contributing to the overall ambiance of the urban area. Despite these
limitations, the LDC images remain a valid source of data for our pur-
poses. This is because they simulate a virtual walk down the street that
replicates an eye-level experience, and the large number of LDC images
provides granular, unprecedented coverage that would be impractical
(and cost-intensive) to obtain otherwise.

The second source of data is derived from characteristics that dif-
ferentiate the particular visual representations of LDC images, and is
used in the third stage of our approach. Our variable selection covers
measures derived within a 15-minute walk catchment (assuming a walk
speed of 4.5 km per hour) around each leisure and retail premise (see
Fig. 3.2). These catchments are constructed using OSMnx, which is a
Python library for acquiring, analysing and visualising street networks
(Boeing, 2017). Within each catchment, we derive measures for a
number domains outlined in Dolega et al. (2019) that describe shopping
activity such as composition, diversity, size and function, and economic
health (see Table 3.1). Aside from LDC and OSMnx data, we derive

Fig. 3.1. Sample LDC images for several features in Table 3.1. Each image is a random sample from each of five equal interval bins.
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variables from several other sources. Census data is provided by the
(ONS, 2016), our e-res_score variable is from a Consumer Data Research
Centre (CDRC) data product and describes the vulnerability of town
centres to the impacts of online shopping (estimated by Singleton et al.,
(2016)), and the transport variable is from the database of National
Public Transport Access Nodes (NapTAN) (Department for Transport,
2014). In addition, we use a small number of census-based socio-eco-
nomic characteristics at Output Area (OA) level to describe the area in
which the leisure or retail premise resides. OAs are built from postcode
units and are the smallest statistical unit for which UK census data is
published (ONS, 2019).

3.2. Visual features from CAEs

Given the collection of leisure and retail property images are un-
labelled and represented by a large number of raw pixels, a mathe-
matical technique is required to decompose this larger set of correlated
variables (or pixels) to a condensed set that captures the most salient
characteristics of the image (Efron and Hastie, 2016). To learn this
compressed set of variables from the raw pixels we rely on Convolu-
tional Autoencoders (CAEs) (Goodfellow et al., 2016) which are com-
posed of two layers: an encoder layer fE and a decoder layer fD. From a
non-technical standpoint, the objective of CAEs is to take an input
image, I , and reconstruct it as a copy, I . Internally, CAEs use a hidden
layer h that describes a code to reconstruct the image (Goodfellow
et al., 2016). This lower dimensional mapping forces the CAE to
prioritise aspects of the image that are the most useful for re-
constructing a copy from the input image, meaning h learns the most
useful properties of the data while discarding redundancies.

CAEs are extensions of autoencoders, which are techniques that
essentially reduce the data under consideration to a smaller set of
principal values. Practical applications of autoencoders include data
compression for saving storage space and transmission times, and also
cleaning corrupted data inputs by denoising. Thus, CAEs are auto-
encoders that introduce convolutional and (de)convolutional layers in
the encoder fE and decoder fD sections, respectively:

= + =f I K b h( )E

where is a Rectified Linear Unit (Relu) activation function which is a
truncation performed individually for every pixel x of the input,

=Relu x max x( ) (0, )ij ij , that allows the CAE to learn non-linear patterns
in the data, I are × ×224 224 3 images where the 3 refers to the red,
blue and green (RGB) colour channels, K are ×3 3 matrices called
convolutional filters, b is the bias unit which is similar to the intercept
of a linear function and allows the line of the activation function to shift
from the origin, and h is the code that represents the lower dimensional
mapping of I . The convolution operator, I K , is described more ex-
plicitly for the first layer in Eq. 3.2:

=
= = + +I K K I( ) ·xy i k ij x i y j1

224

1

224
1, 1

which overlays each ×3 3 filter over every possible pixel of the image,
and records the sum of the element-wise product to an intermediate
representation known as an activation map. The convolutional operator
exploits spatial location in the image, as neighbouring pixels become
activated for particular groups of edges that respond to semantically
meaningful objects – trees, cars, or people, for example. This means
particular filters become activated for specific patterns in the image,
and stacking these filters across successive convolutional layers facil-
itates parameter sharing, where hierarchies of filters introduce levels of
abstraction to the different kinds of features identified in the image
(Goodfellow et al., 2016). As an example, the banks of filters learnt at
the first convolutional layer might represent lower-level features such
as lines, circles, and curves, while the higher-level convolutional layers
will use these to construct whole objects – eye-like shapes or auto-
mobile wheels, for example. As the starting values of the K filters are
randomly initialized, over the course of training the CAE the network
will learn to find the optimal filter values that minimize the re-
construction error between I and I .

Within each convolutional layer, a final step commonly applied to
modify the output from Eq. 3.2 is pooling. We apply the max pooling
operation which returns the maximum pixel value within a ×2 2 filter
that steps across non-overlapping pixels of the input. This has the net
effect of down-sampling an image by a factor of two, which sequentially
reduces the pixel representation of our image from × ×224 224 3 to a
latent representation, h, which has shape × ×28 28 1 and reflects the

Table 3.1
Variable description for the domains of economic health, composition, size and function and socio-economics of leisure and retail premises.

Variable Description Source Mean Std. Dev Unit

Economic health
bus_rate Rateable value taxed on the business property. LDC 100,639.9 976,771.5 Pounds
vac_rate Vacancy rate of Local Authority District the property resides in. LDC 0.09 0.03 Percent
unemployed Percent of unemployed people in Output Area. ONS 5.75 3.64 Percent
e-res_score E-resilience score of nearest town centre. CDRC 0.08 0.45 Score
transport Number of bus or train links within catchment NaPTAN 61.21 38.19 Count

Composition
comparison Proportion of comparison goods stores within catchment (clothing, household goods, etc). LDC 0.21 0.21 %
hospitality Proportion of hospitality outlets within catchment (restaurants, bars, etc). LDC 0.31 0.24 %
convenience Proportion of food retailers within catchment (grocers, butchers etc). LDC 0.13 0.18 %
consumer Proportion of consumer services within catchment (banks, estate agents, etc). LDC 0.18 0.21 %
tenant_mix Retail to service ratio of catchment. LDC 0.88 1.00 Ratio
store_diversity Diversity of store types within catchment calculated by Shannon entropy. LDC 1.14 0.57 Bit

Size and function
floor_area Total floor area for the property. LDC 227.61 830.08 m2

car_parking_spaces Number of car parking spaces at the property. LDC 1.28 17.36 Count
roeck_compactness Compactness of catchment morphology. OSMnx 0.49 0.13 Ratio
store_diversity Number of stores within catchment. LDC 14.24 20.45 Count
eig_centrality Influence of store location within street network of catchment. OSMnx 0.02 0.04 Score
street_length_avg Average length of streets in catchment. OSMnx 66.43 25.86 Meter
street_density Total street length within catchment divided by catchment area. OSMnx 15911.72 7134.42 km2

Socio-economic
high_nssec Percent of people with higher occupational employment in Output Area. ONS 42.86 17.21 Percent
detached Percent of housing units classified as detached in Output Area. ONS 6.09 9.52 Percent
flats Percent of housing units classified as flats in Output Area. ONS 35.13 24.94 Percent
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visual features we use for our clustering exercise (see Section 3.3).
To train the CAE end-to-end, we also require a decoder fD network

that reconstructs the original image I from h:

= + =f h U b I( )D

The only difference between fE and fD is that convolutional layers in
the former are replaced by deconvolutional layers in the latter. This has
the net effect of up-sampling the latent representation h ( × ×28 28 1)
back to × ×224 224 3, thus completing the reconstruction of the ori-
ginal image I . Once the CAE network has been sufficiently trained, the
latent representation h, represented by × × =28 28 1 784 pixels, be-
comes the basis of the visual features we use to differentiate between
the visual scenes of different leisure and retail premises. To summarise
these methodological steps, we visualise the resulting CAE architecture
defined by Eq. 3.1 and Eq. 3.2 in Fig. 3.3. In regards to implementation,
the CAE model is defined in Keras (Chollet, 2015), with training un-
dertaken on a single Nvidia Quadro M4000 GPU with 8 GB memory.

3.3. Clustering visual features

To derive meaning from the visual features, we require a technique
to group our vectors of visual features such that those in the same
grouping exhibit similarities. This allows us to unpack similarities be-
tween the visual scenes for different retail environments which we can

then describe by a number of functional characteristics outlined in
Table 3.1. Our approach constructs a bottom-up classification where an
initial typology with 250 numerous smaller groups are partitioned
using k-means. Given the sensitivity of k-means to the initial starting
values of the centroids, the algorithm is initialized 1000 times with
different centroid seeds, taking the final result as the output that best
minimizes the within-cluster sum of squares. Finally, we allow up to
100,000 iterations within a single run to ensure stable convergence of
the centroids. After the initial partition, we aggregate the clusters into
coarser and larger groupings based Ward’s method of hierarchical
clustering (Ward, 1963). As Ward’s method produces a dendrogram, we
use it to slice a horizontal cut along the y-axis to create coarser levels of
classification, which groups the 250 centroids of visual features into a
smaller number of distinct clusters. This final partition represents the
resulting clusters that differentiate the visual characteristics of the LDC
images. Thus, we replicate a work flow similar to Spielman and
Singleton (2015) and follow simple and widely supported methods to
facilitate methodological transparency and reproducibility.

4. Results

In this section, we develop a discussion of our empirical findings
based on two validation procedures. First, we undertake a validation
exercise on our bottom-up clustering solution to ascertain a desirable

Fig. 3.2. Example 15-minute walk catchment for a retail store around London Bridge. Note: 30 leisure or retail premises are sampled within the catchment to avoid
clutter. Large red star denotes the store for which the catchment was created. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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number of clusters; and second, we explore consistency of group
membership to particular clusters across sets of visual features gener-
ated from the CAE and two pre-trained CNNs. For brevity, the detailed
outcome of these exercises are moved to Appendix A and Appendix B.
Based on the outcome of these exercises, in the following section we
introduce several characteristics to unpack differences between the five
distinct clusters of images we retrieve from our clustering approach.

4.1. Differentiating visual characteristics

To describe differences between the visual clusters, we aggregate
characteristics for the consumer properties from Table 3.1, taking the
median value for each variable per cluster. Prior to the aggregation, we
transform each variable to z-scores by standardization, =z x µ ,
meaning each characteristic is rescaled by the fractional number of
standard deviations from the mean value. To begin, we introduce radar
plots in Fig. 4.1 where each plot reflects a different visual cluster that
shares similar psychological attributes reflected by common visual
elements such as similar exterior design, signage, architecture, or
colour. Along the axis of each plot aggregated variables that describe
functional characteristics of these clusters are displayed. Thus, in
synthesis of visual (psychological) attributes revealed by the cluster
groupings and functional characteristics by the variables, we describe
the scene projected by the clusters.

Turning to the group sizes, we note the numbers of leisure and retail
premises within the visual clusters vary substantially. Our largest
cluster, Group A, contains 159,251 leisure and retail properties whose
built environment is distinguished by high density street networks and
large proportions of comparison retail outlets who sell merchandise
that consumers purchase relatively infrequently and so evaluate prices,
features and quality between stores before making a purchase. This
includes outlets such as DIY & household goods, electrical, and clothing
and footwear stores. Group A also contains a considerable proportion of
hospitality outlets such as restaurants, bars and pubs, and entertain-
ment venues. The Roeck compactness value measures irregularity in the
shape of the retail area’s boundary, with higher values indicating a
highly compact retail area and lower values reflecting dispersion. The
Roeck value for Group A, alongside its high street density, implies the
urban morphology of the built environment around these stores is
highly dense and not dispersed. All together, this suggests the scene
characteristics of Group A reflects a bustling shopping area with rela-
tively affluent residents who live in the immediate area (as shown by
the high percentage of residents in higher occupational roles).

Group B contains 24,567 leisure and retail premises and is highly
differentiated amongst its characteristics when compared to the other
clusters. The functional attributes shared by leisure and retail premises
inside this visual grouping reflect areas that have a low diversity of
premise types, with the majority of outlets represented by comparison
retail or consumer services such as car showrooms and house & home
stores. Premises in this cluster are located in areas with high vacancy
rates, meaning there are higher percentages of vacant or unoccupied
store units relative to the other groupings. Moreover, outlets in this
cluster appear to have high total floor areas and are serviced by fewer
transport options, which conjures images of peri-urban spaces con-
sisting of large retail units and warehouse spaces located on the fringes
of dense urban areas and so are less beaming with consumer activity.
Overall, the visual and functional characteristics of Group B portray a
scene of sparse and less desirable retail and leisure land use when
compared with the other clusters. This is reinforced by socio-economic
characteristics which reveal that individuals who live in the area, and
might patron the shopping environment as consumers, typically occupy
low percentages of high paid employment.

The next grouping that shares visual similarity is Group C, which
contains 81,310 leisure and retail premises and is ascribed the label of
‘Upmarket Hospitality’. The shopping environment of premises in this
cluster are reflected by a large proportion of diverse hospitality outlets
and leisure venues. This includes services ranging from restaurants and
bars to theatres and galleries. A second defining characteristic of Group
C is the extremely low vacancy rate when compared with the other
clusters. This shows store units around the built environment for this
grouping are typically occupied, which implies units in this cluster are
in higher demand and so possibly elicit increased rates of rent. Similar
to Group A, catchments around premises in this cluster are well served
by transport links and possess highly similar urban morphology and
socio-economic characteristics. In synthesis of visual similarities for
leisure and retail premises within the cluster and functional char-
acteristics of the urban landscape around these premises, Group C
projects the scene of a thriving and upmarket shopping environment
that is highly accessible and amenable to consumption activity.

Our smallest grouping, Group D, contains 6,962 leisure and retail
units and is highly similar to Group C, although there are a few vari-
ables that differentiate the two clusters. Like Group C, Group D is
characterised by a diverse range of hospitality outlets and stores that
provide comparison goods such as electrical appliances and clothing.
Compared to the dense street network of Group C, the urban mor-
phology of Group D appears to reflect longer average street lengths that

Fig. 3.3. Convolutional Autoencoder (CAE) architecture showing encoder fe, compressed representation h, decoder fd and reconstructed LDC image I . Note: filter
numbers are shown horizontally along z-axis of feature maps, while width and height are shown along the x and y, respectively. Illustration was produced on the
open-source vector graphics editor Inkscape (Inkscape Project, 2019).
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are fairly dispersed as shown by the low street density. Consistent with
conventional wisdom, these two observations imply the built environ-
ment surrounding leisure and retail premises of Group D reflects high
street shopping areas. Residents who occupy residential housing near
stores in Group D typically occupy lower proportions of higher man-
agerial roles. This suggests consumers, and by extension local con-
sumption opportunities, are represented by less upmarket leisure and
retail outlets given local patrons are typically less affluent than in
Group C. Nine example images comparing low to high average street
length for Group A and D, respectively, are shown by Fig. 4.2. The
presence of automobiles in images sampled from Group D suggest the
built environment here is more amenable to vehicle use, with streets
around leisure and retail premises in this cluster typically longer and
less dense. All together, the composite visual and functional char-
acteristics of Group D project a scene of long high streets that serve a
diverse range of consumption purposes to local consumers.

The last cluster, Group E, contains 81,310 leisure and retail pre-
mises and represents a middle ground between Group C and Group E.
While units providing hospitality represent the highest proportion of
services in this cluster, no particular mode of retail or leisure dominates
unlike the other groupings. In fact, premises in Group E have the lowest
proportion of comparison retailers in the surrounding urban environ-
ment. The urban morphology of Group E is fairly dense and compact, as
evidenced by a relatively high street network density and Roeck com-
pactness value. In synthesis, the shared functional attributes of premises
in Group E suggest this grouping reflects a leisure, services and shop-
ping environment that is accessed by consumers for everyday con-
sumption as opposed to being accessed for a particular mode of retail or
leisure service.

5. Discussion and conclusions

Visual characteristics of shopping environments are a significant
determinant of area consideration and choice (Bell, 1999). Tradition-
ally, visual representations of retail areas are retrieved using teams of
human surveyors, who are cost-intensive to train and limited in the
throughput necessary to construct the visual form of built environ-
ments. Consequently, in this paper, we use vast quantities of street-level
imagery to explore whether visual features of leisure and retail en-
vironments correlate to measurable characteristics of built environ-
ments. This was achieved using a deep learning model known as Con-
volutional Autoencoders (CAEs) which learnt a compressed
representation that captured the most salient characteristics required to
reconstruct the image from a lower dimensional representation. Once
these visual features were partitioned into a sensible number of clusters,
functional characteristics that describe a 15-minute walk catchment
from each premise were introduced to differentiate between the cluster
partitions. By clustering the compressed representation, we were able to
identify five partitions from the data that reflected different categor-
isations of the scene that particular shopping environments project to
consumers across a national extent. This is important because in-
formation describing retail area image has historically been desired by
retail planners for rationalising investment decisions in place marketing
campaigns (Page and Hardyman, 1996), but is seldom available at wide
geographical scales.

Furthermore, our findings unpacked patterns of retail activity and
function, which demonstrated that certain visual features were dis-
tinctive for particular built environments. From an urban planning
perspective, the main implications of our study demonstrated that

Fig. 4.1. Median economic health, composition, size and function, and socio-economic characteristics in standardized units. Circular red line identifies zero, which
shows standard deviations from the mean value. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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aspects of what humans see were related to particular functional char-
acteristics of retail environments. This was a pertinent question for
retail practitioners to ask, as while previous studies have shown that
proximity to (and attractiveness of) amenities such as leisure plazas,
galleries and shops enter into consumer patronage decisions (Glaeser
and Gottlieb, 2009), the defining visual characteristics of these en-
vironments are typically ignored. This is despite visual amenity being
an important influence on patronage behaviour and the scene that
shopping environments project to consumers (Silver and Clark, 2016).

In more practical terms, our approach could be mobilised within
retail planning by adding a visual dimension to retail site optimization
tools, and be used to optimally locate stores in locations suitable to
particular consumer space uses. More precisely, retail managers could
take photographs of prospective site locations, and classify each one
according to the several clusters we identify. This would require passing
the photographs through the CAE, and using the clustering outcomes
fitted on the LDC images to predict cluster membership of these new,
unseen photographs. Our approach, therefore, could be used to con-
textualise the visual qualities of potential store locations among store-
fronts that look visually similar through observing which particular
environmental variables are atypical of the visual cluster this new
image belongs to. A retail manger interested in siting a restaurant, for
example, could photograph several prospective locations up for sale,
and use our approach to retrieve a classification for each. The resulting
classification would provide information describing whether the visual
qualities of each location reflect typical uses of these spaces that are
suited to their business. Following our restaurant example, a photo-
graph classified as sharing visual commonalities to our Upmarket
Hospitality cluster would likely present the most idealised location, by
highlighting this photograph shares visual similarity to locations that
appear to attract high volumes of hospitality services. In using this
approach to complement existing tools, we argue taking into account
the visual amenity of potential locations could help retail planners to
arrive at smarter site location decisions, which carries wider implica-
tions for the vitality of town centres when amenities within these
consumption spaces are optimally situated.

More generally, replication of our approach on a similar corpus of
images (Google Street View, for example) could be used by planners to
find whether different visual environments reflect particular patterns of
built environment use, crime or socio-economic conditions of an area.
Across particular urban centres, for example, planners might collect
similar image-based data and apply our methods to identify visual

commonality between different locations. Then, by collecting a set of
variables of interest describing each location, planners might identify
similarity or dissimilarity across different variables between the visual
clusters. By example, if planners find a particular cluster suffers dis-
proportionately high crime rates, they could sample a number of images
from this cluster and undertake post-hoc analysis on possible visual
cues embedded in images of these locations. In doing so, our approach
provides means for planners to evaluate visual elements that potentially
drive the incidence of conditions like crime, which might be identified
from locations with high enclosure or no street lighting, for example.

A further contribution of the present study relates to several
methodological innovations we introduce in the analysis. As our CAE
model is unsupervised, it does not require large numbers of labelled
images for training the model to produce visual features for each image.
While the existing focus of the literature uses pre-trained or fine-tuned
Convolutional Neural Networks (CNNs) for computer vision tasks in
urban planning (Dubey et al., 2016; Seresinhe et al., 2017; Zhang et al.,
2018), in the present paper we show that unsupervised techniques such
as CAEs can also extract visual information from street-level imagery.
This is advantageous for two reasons. Firstly, it does not require the
user to assemble a large number of labelled images for training the
CNN, which might possibly be derived from a non-expect workforce on
a crowd-sourcing platform such as Amazon Mechanical Turk. And
secondly, because pre-trained networks are often designed for a dif-
ferent purpose than that intended by the user, transfer learning ap-
proaches may provide sub-optimal performance if the images used are
too heavily skewed compared to the data used to train the original
network. Thus, while CNNs can be fine-tuned to the user’s image data, a
secondary contribution of this paper highlights the utility of CAEs for
urban scientific tasks seeking to extract visual information from street-
level imagery.

Despite these advantages, there exists conceptual and methodolo-
gical limitations that frame the conditions for which the study should
be interpreted. From a conceptual standpoint, it is reasonable to suggest
the 15-minute walk catchment used to derive measures that describe
the functional characteristics of the environment around each premise
might not be reflective of reality on the ground. A 15-minute walk in a
dense urban environment like London is likely to intersect a variety of
scenes that possess polarised socio-economic and functional char-
acteristics – for example, the short distance between the affluent and
poorer areas of Clapham and Brixton, respectively. This means mea-
sures describing the built environment within each catchment might be

Fig. 4.2. Leisure and retail storefront images and average street length values in metres sampled from Group A and Group D.
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inaccurate due boundary effects that influence area consideration and
create barriers beyond which consumers do not patronize. From a
methodological perspective, a further limitation is that repeatability of
the empirical approach is conditional on the availability of suitable
GPU hardware for training the CAE model end-to-end. Unfortunately,
deep learning models require appropriate hardware to train, and this
presents a financial barrier of access to researchers interested in re-
plicating (or extending) the empirical strategy to their own datasets.
Despite these concerns, the main contribution of this article presents
directions for future researchers to employ the deep learning methods
adopted by the paper. As CAE networks are unsupervised, they offer
flexibility to researchers seeking to extract visual features from image
data without using pre-trained networks. This is a pertinent point to

consider because the target domains of pre-trained networks are often
purposed to answer a different research question than that asked by the
user.
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Appendix

A. Cluster validation

The lack of a single global optimization procedure is an inherent limitation of clustering exercises, meaning the plausibility and usefulness of the
classification are typically split between the purpose it serves but also a validation of its system-wide accuracy. With this in mind, we pair human
intuition for ascertaining a sensible number of clusters alongside a metric used for measuring cluster compactness known as average silhouette
width. To determine the quality of possible cuts to the dendrogram and, therefore, resulting number of final clusters, we calculate the average
silhouette width for several partitions of the 250-class k-means solution. Silhouette width ranges from s1 1i , with higher values being
desirable as they imply low within-cluster dissimilarity; it is calculated as =si

b a
max a b( , )

i i
i i

, where ai is the average Euclidean distance of i to all other
data points in the same cluster, and bi is the Euclidean distance of i to the cluster nearest to the one i is assigned to.

In practice, we average si for all observations for each cut from 2 to 249 of the dendrogram in Fig. A.1, taking the final cut as one that yields a
high average silhouette and sensible number of clusters. By scanning the figure we are able to discern a sensible number of five clusters which is ideal
because five is both manageable to describe and large enough unpack interesting between-cluster variation. To accompany this, we provide the
resulting dendrogram for the five clusters in Fig. A.2, which visualises the agglomerative steps used to aggregate the 250-class k-means solution into
five coarser groupings. This is important because hierarchical clustering techniques do not provide cluster partitions automatically, and so tree-cutting
procedures are required to return partitions that reflect similarities amongst observations in the agglomerative procedure. In our case, while other
cuts to the dendrogram offered reasonable performance, we take the decision to cut the dendrogram horizontally at this particular position (of the
y-axis in Fig. A.2) because the five cluster solution has a high average silhouette width and sensible number of clusters.

Fig. A1. Average silhouette for different aggrega-
tions of the 250-class k-means solution. Vertical
dashed line indicates the desired five-class solution.
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B. Consistency with pre-trained visual features

To benchmark the visual features, h, retrieved from the latent representation encoded by the CAE we extract a similar set of visual features from
two pre-trained Convolutional Neural Networks (CNNs): VGG16-Places365 (Kalliatakis, 2017) and ResNet50 (He et al., 2015). While pre-trained
CNNs are trained using large volumes of labelled data for predicting a pre-defined set of categories, CAEs learn visual information that is optimised to
the dataset supplied by the researcher. Between these approaches reflects a trade-off between the generalisability of CNNs to extract features learnt
from a larger pool of images and more focused visual information extracted from the CAE trained on the researcher’s data. Irrespective of this, both
serve as points of comparison to assess the consistency of group memberships to particular clusters across different sets of visual features. Given these
networks are pre-trained, they are not required to be trained from scratch, and so are initialized with existing weights. For VGG16-Places365, the
network weights are initialized to those trained on the Places365 database consisting of 365 different environment categories – highways, vineyards,
or libraries, for example – and are tuned for scene recognition tasks. ResNet50, on the other hand, is initialized with weights trained on the ImageNet
database, which is a large visual dataset consisting of hand-annotated images that represent a wider range of 20,000 categories. For these pre-trained
networks, we remove the fully-connected layer at the top of the network, meaning instead of returning probabilities for categories, we extract the
visual features that are discriminative towards particular categories instead. In all, three sets of visual features are introduced to the clustering
exercise introduced below. This includes visual features from the CAE represented by 784 pixels, VGG-Places365 features by 512 pixels, and ResNet50
features by 2048 pixels.

To externally validate our empirical approach we monitor changes in group membership and cluster sizes between visual features extracted from
our CAE and the two pre-trained convolutional neural networks (CNNs), VGG16-Places365 and ResNet50. Thus, after clustering each set of visual
features from the three models, we explore agreeability of cluster membership for a five cluster solution in Fig. B.1. The cluster sizes are represented
by the vertical white rectangles for the CAE, VGG16-Places365, and ResNet50 models (left to right), with the frequency of leisure and retail
amenities changing between groupings shown by the stream fields, and so represent changes in the composition of clusters between the three models.
From an initial reading of the figure a mixed picture emerges. While the group sizes are moderately consistent between the CAE and VGG16-
Places365, the clusters formed from the visual features of ResNet50 are far more balanced, with leisure and retail amenities spread more equally
amongst the partitions. In regards to group membership, the highest agreeability is observable between the largest clusters partitioned using visual
features of the CAE and VGG16-Places365 models. Similarly, the clusters identified by ‘0’ in both models seem to share moderate agreeability, with
there also being minor agreeability between ‘2’ and ‘4’ of the CAE and VGG16-Places365 models, respectively; the frequency flows of the remaining
clusters are far more dispersed between different clustering solutions. Agreeability with ResNet50 visual features, on the other hand, is observably
low, with there being no discernible patterns and consistencies between the clustering solutions. This is unsurprising given the target domain of both
pre-trained networks is highly dissimilar, a phenomena known as data bias (Chen et al., 2017). While VGG16-Places365 is optimized for scene
recognition tasks, ResNet50 is trained to predict over 20,000 object categories from the ImageNet database, with classes ranging from particular
types of plants to bedroom items. The weights of the ResNet50 network are tuned to generate visual features that are discriminative for a wider range

Fig. A2. Dendrogram displaying the ag-
glomerative merge of the 250-class k-means
solution.
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of object classes, meaning when we recover a representation for each leisure or retail amenity image, the kinds of features activated are more
generalised than those from VGG16-Places365. This is due to the narrow focus for the range of categories that VGG16-Places365 has been trained to
identify (with an emphasis on scene recognition tasks), meaning the visual features are more likely to be similar to those derived from the CAE
model. Therefore, as the LDC images describe scenes observable from street-level, there is likely higher agreeability between the CAE and VGG16-
Places365 models in terms of group membership and cluster sizes, which is reflected in the figure. All together, these observations confirm the visual
features we extract using the CAE model are representing salient properties of the image, which motivates our descriptions for the characteristics of
particular visual clusters in our empirical findings section.
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