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H I G H L I G H T S  

• The contribution of user-generated images to house price estimation is minor. 
• User-generated images may supplement house price estimation to capture perception. 
• Flickr images are employed for perceived scene features using image recognition. 
• Important housing and image features are identified and visualised. 
• Random forest exceeds hedonic price model in performance and interpretability.  
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A B S T R A C T   

Determinants of housing prices are particularly significant for monitoring and understanding housing prices. 
Traditional variables are measured through official statistics or questionnaire surveys, which are labour intensive 
and time-consuming. New forms of data, such as point of interest or street view imagery, have been used to 
extract housing location and neighbourhood features, but they cannot capture how different individuals rec
ognised and evaluated the properties nearby, which may also be relevant in the house price estimation. 
Therefore, this study investigates whether user-generated images may be used to monitor and understand 
housing prices and how they influence real estate values. Within this context, perceived scenes features are 
extracted and quantified to blend with commonly used determinants of housing prices. Two machine learning 
algorithms, random forest and gradient boosting machines, are utilised and deployed for integration with a 
typical housing price modelling-hedonic price model. By comparing the performance and interpretability of 
different models, the relative importance of features and how they influence the estimation power of the models 
is visualised and analysed. The findings suggest that random forest predictions perform the best and are inter
pretable, with geotagged Flickr images adding 4.6% to the model’s accuracy (R2) from 61.9% to 66.5%. 
Although user-generated images increase minor value in house price estimation, they may be used as a sup
plementary data source to capture perception features for house price estimation. This could help the restruc
turing and optimisation of residential areas in future regional construction, planning and development.   

1. Introduction 

Housing affordability has become a social issue across the globe (UN- 

Habitat, 2020), which has brought substantial challenges to various 
dimensions of the social fabric, including, but not limited to, urban and 
social inequality (Liu et al., 2020), mobility (Causa & Pichelmann, 2020) 
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and health and wellbeing (Chung et al., 2019). As a result, government 
agendas have prioritised monitoring and analysing housing prices to 
provide suggestions for house purchasers, researchers, and policymakers 
in urban planning and real estate, thereby building a healthy housing 
market (Hu et al., 2019). However, the determinants of housing prices 
are complicated and multidimensional; others remain uncertain (Nistor 
& Reianu, 2018; Wang et al., 2017; Zhang et al., 2012). The complexity 
of housing prices hinders policymakers from formulating and delivering 
equitable and sustainable planning for housing market development and 
urban environment improvement (Yao et al., 2018). 

Determinants of housing prices can be understood from two scales. 
First, at the macroscale, economic bases generally influence housing 
prices (Wang et al., 2017), such as population, household income, and 
building costs at the administrative or city level (Baker et al., 2016; Cai 
& Lu, 2015). Second, on the microscale, surrounding environmental and 
social characteristics become dominant factors since urban residents are 
affected by common macroeconomic variables (Hu et al., 2019). Many 
studies have investigated the determinants of housing prices within 
intraurban settings, summarised into three types: structural features, 
location features, and neighbourhood features (Xiao et al., 2017). 
Structural features refer to the features related to the property itself, 
such as the type of property or the age of the house (Law et al., 2019). 
Location features reflect characteristics of the property’s geographic 
location, such as the distance to the city centre or retail centre (Zhang & 
Dong, 2018). Neighbourhood features can be viewed as the availability 
and accessibility of several critical urban amenities or landscapes, such 
as landscape features, urban greenery, and health care services (Jim & 
Chen, 2006). 

Traditionally, these influential characteristics of housing prices are 
obtained primarily through official statistics, proprietary listings and 
questionnaire surveys (Granziera & Kozicki, 2015), which are costly, 
labour intensive, time-consuming, and may not be readily available to 
the general public. With the increased availability of emerging new data 
and the rapid advancements in computational power, extracting valu
able features from multidimensional data has become economically 
affordable and technically feasible (Singleton et al., 2017). Numerous 
studies have extracted features, particularly neighbourhood features, to 
analyse housing prices through new forms of data such as points of in
terest (POIs) collected from social media platforms or mobile sensors 
(Hu et al., 2019; Wu et al., 2016; Yao et al., 2018). 

Emerging studies have centred on extracting perceptions to under
stand the driving factors of housing or rental prices, primarily through 
street-view imagery (Han & Lee, 2018; Hughes et al., 2016; Law et al., 
2020; Yang et al., 2021). Perceptions extracted from street view images 
may be considered an objective reflection of the urban physical envi
ronment. However, these perceptions cannot imply what people care 
about or the interaction between humans and the built environment in 
the real world. Unlike street view imagery, user-generated geotagged 
photographs (i.e., Flickr imagery in this study) can directly capture 
people’s perception of the built environment (Chen et al., 2020). These 
photographs are collected, derived, and shared by different and 
numerous individuals, reflecting their preferences on the built envi
ronment at a particular time and, in aggregate, suggesting how the city is 
collectively perceived. By extracting characteristics from geotagged 
photographs taken surrounding properties, more appealing human- 
perceived scenes may be identified, which we hypothesise are likely to 
influence property values more than other factors nearby. As such, user- 
generated geotagged photographs are considered to capture such po
tential impacts of perceived scenes representing distinctive place char
acteristics of the city evaluated and identified by different individuals 
(Zhou et al., 2014). These are relevant driving factors in housing market 
valuation and may help stakeholders in multiple fields. For instance, 
such images can be meaningful for local authorities to understand what 
scenes make a city more attractive (Chen et al., 2020), for government 
and urban planners to facilitate the revitalisation of residential neigh
bourhoods (Lu, 2018), or potentially as sources of inspiration for urban 

designers (Barkham et al., 2018). 
Within this context, this study aims to explore whether user- 

generated geotagged images can be taken into consideration in terms 
of housing price estimations and how they influence real estate values. 
To achieve this, a Places365 convolutional neural network (CNN) 
trained by Zhou et al. (2018) is configured to quantify and identify 
perceived scenes from geotagged Flickr photographs. This model allows 
us to blend these perceived scenes with standard housing price features 
to explore whether geotagged Flickr images impact housing prices. In 
addition to the traditional hedonic price model (HPMs), two interpret
able machine learning algorithms, random forest (RF) and gradient 
boosting machines (GBM), are also trained and deployed to be compared 
in performance and interpretation. The novelty of this research is 
depicted in two main aspects. On the one hand, user-generated geo
tagged images have feasible prospects in house price estimation. This 
aspect remains largely unexplored in the literature that extracts neigh
bourhood features of housing prices from physical POIs data rather than 
actual perceptions from individuals. On the other hand, RF and GBM are 
integrated with traditional and widely used HPMs to identify features 
that affect housing prices. By comparing the performance and inter
pretability of different models, the relative importance of features and 
how they influence the estimation power of the models are quantified 
and identified. 

This research could provide helpful references for stakeholders, i.e., 
an additional data source (i.e., geotagged Flickr) for real estate asses
sors, a site selection strategy for real estate developers and better 
adjustment and optimisation of housing policy for the government. The 
remainder of the study is structured as follows. Section 2 reviews models 
related to housing price estimation and the use of images employed in 
the urban perception field. The following section describes multiple 
datasets collected and processed to obtain housing structural, location 
and perceived scene features for the estimation models. Section 4 pre
sents the overall method framework used and each technique and pro
cedure implemented in this study. The experimental results and 
discussion are reported in Section 5. Finally, Section 6 concludes the 
scientific and practical contributions, limitations and further works of 
this study. 

2. Literature review 

2.1. House prices models 

A typical and frequently used theoretical model to identify and 
analyse features that influence housing value is the HPM, which has 
been used in various studies (Chen & Jim, 2010; Zhang & Dong, 2018; 
Hamilton & Morgan, 2010; Wen & Tao, 2015). This model measures 
how each of the potential features affects housing prices, playing a role 
in uncovering the intrinsic value of a single attribute based on the 
estimation of the marginal changes in observed prices (Rosen, 1974). 
For instance, Hamilton and Morgan (2010) integrated LiDAR data and 
geographic information science into an HPM to estimate the desire to 
purchase houses with beach access and view. Wen and Tao (2015) 
employed an HPM to examine the polycentric urban structure in 
determining housing prices. However, the HPMs have been criticised for 
their strong assumptions on the linear relation between features and 
prices and their inability to handle spatial heterogeneity (Anglin & 
Gençay, 1996; Dubé & Legros, 2014). Although alternative methods 
such as spatial econometrics and geographically weighted regression 
have been proposed to incorporate spatial effects (Choumert et al., 2014; 
Huang et al., 2017), they require prior knowledge and the assumption of 
linear relationships between attributes and housing prices and cannot 
address multiscale effects well (Hu et al., 2019). As a result, to overcome 
the above issues, more recent studies have turned to machine learning 
techniques in housing research. Some have compared the model per
formance among multiple regression approaches to determine better 
models for real estate price estimation (Chen et al., 2016; Hu et al., 
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2019; Park & Bae, 2015), and others have proposed improvements of 
original models or a combination of two models in housing studies 
(Wang et al., 2014; Yao et al., 2018; Hu et al., 2019). These works have 
proven the usability and advantage of machine learning methods in 
forecasting housing prices due to their fit for nonlinear relationships and 
better prediction accuracy over traditional HPMs. However, the 

interpretation and visualisation of machine learning results remain 
limited, requiring further investigation. 

2.2. The use of images in urban perceptions 

Scientists have claimed that a physical or mental image is an 

Fig. 1. The spatial distribution of (a) the average housing prices and (b) the percentage of Flickr imagery datasets at hexagonal aggregation in Inner London 
(2013–2015) (Note: For better visualisation, hexagons with less than 346 Flickr photographs are not plotted on the map, which does not represent there is no Flickr 
photograph at these areas). 
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intuitive and direct perspective for capturing the human perception of a 
city (Ittelson, 1978; Lynch, 1960). However, as previous studies pri
marily relied on qualitative analysis, such as visual surveys and in
terviews (Nasar, 1990; Scott, 1998), quantitative measurements 
remained limited until the technological advances in computer vision 
revolutionised the field a decade ago. Since then, an increasing number 
of researchers have utilised images in urban perception studies (Biljecki 
& Ito, 2021; Ibrahim et al., 2020). Some are interested in the identifi
cation of visual representations in the city (Chen et al., 2020; Comber 
et al., 2020; Doersch et al., 2012; Zhang et al., 2018), and others focus on 
quantifying perceptual characteristics of the city or on their relation
ships with nonvisual socioeconomic attributes, such as population 
density and crime rate (Arietta et al., 2014; Dubey et al., 2016; Khosla 
et al., 2014; Naik et al., 2014; Salesses et al., 2013). These works mea
sure the perception of places through varying image recognition tech
niques, while they are unable to reflect different people’s interactions 
and perceptions of a place because they are usually not sourced from 
varying individuals. 

Taking the above literature into consideration, this study seeks to 
exploit the potential of image-based social media (i.e., Flickr photo
graphs) to analyse housing price studies, aiming to uncover whether 
social media images can be used to explore the environmental impacts 
on property nearby and how these perceptual features affect housing 
values. 

3. Data acquisition and processing 

This study parimarily used three datasets. The first two encompass 
traditional housing attributes, including structural, location and neigh
bourhood features of housing. The third includes geotagged images 
collected from the social media platform Flickr, capturing scenes around 
properties. This study focuses on London as a case study, as it provides a 
reasonable degree of Flickr usage. To obtain a higher density of images 
and reduce spatial heterogeneity, Inner London is selected since a large 
volume of Flickr images (73%) fall into this area compared to Outer 
London. The datasets are collected from 2013 to 2015, when Flickr users 
were most active, based on the number of photographs uploaded. Fig. 1 
shows the density distribution of the average housing price transactions 
(a) and the percentage of Flickr images (b) in Inner London at hexagonal 
aggregations, calculated at hexagon length of 220 m. The average prices 
in Fig. 1(a) display a decreasing pattern from the western boroughs of 
Kensington and Chelsea to Newham in the east. Fig. 1(b) depicts the 
percentage of Flickr density larger than 0.03% of total data (i.e., 346 
Flickr photographs), diminishing from the highest percentage in eastern 
Kensington and Chelsea to the rest of Inner London. 

3.1. Traditional housing features 

Structural features are obtained from housing price data published 
by the UK HM Land Registry (HM Land Registry, 2019), which has 
tracked property sales in England and Wales monthly since 1995. The 
original dataset collected for London includes 226,332 property trans
actions within the 2013 to 2015 period. The dataset is subsequently 
cleaned based on Dong et al. (2019), which only keeps properties sold 
for total market values, as repossessions or buy-to-lets do not reflect real 
estate market values. Since all housing structural features are categorical 
data, we quantified them into indicator variables for each category. 
Additionally, a georeferencing process is used to assign spatial co
ordinates to all postcode addresses of houses to identify neighbourhood 
and perceived scene features. Furthermore, as this study only focuses on 
Inner London, the data outside the study area are removed. After these 
preprocessing steps, 137,132 property transaction records remained, 
with each containing property transaction price, the postcode address, 
the spatial coordinates, the date of transfer, the property type, whether 
the property is new or old, and the tenure type. 

Neighbourhood and location features are collected from POIs data 

and open greenspace data published by the Ordnance Survey (Ordnance 
Survey, 2020). As demonstrated in the literature reviewed above, buyers 
tend to purchase houses with perfect amenities that relate to the area 
where it is located, such as convenient transportation, easy access to 
social infrastructure and access to open spaces. Therefore, a spatial 
query is conducted to measure the number of buses, underground sta
tions, schools, medical (i.e., health) care, and entertainment centres 
within 800 m of each house and the distance from one house to the 
nearest amenities. Furthermore, areas of green space within 800 m of 
houses are also calculated following evidence of their relevance in 
determining housing values (Hu et al., 2019; Sirmans et al., 2005). In 
particular, the 800 m Euclidean distance is used as a threshold because it 
was considered a pedestrian and cycling-friendly distance for residents 
in a neighbourhood (Liu et al., 2020). 

3.2. Scene (image) features 

Scene features are identified from geotagged social media images 
collected from Flickr, an online photo-sharing community with over 90 
million monthly users (Smith, 2020). Although Flickr data have some 
biased aspects such as possible GPS bias of image geolocation, the bias of 
skewed representation of landmarks and, most importantly, self- 
selection, their usability in identifying representative urban character
istics is powerful and has been demonstrated by many studies (Chen 
et al., 2019; Kisilevich et al., 2010; Seresinhe et al., 2018; Zhou et al., 
2014). Furthermore, the extensive coverage of Flickr data for Inner 
London has enabled both iconic landmarks such as towers and bridges as 
well as daily life scenes such as bars and conference centres to be 
identified (Chen et al., 2020), further illustrating the potential usability 
of Flickr images in this study. 

A total of 1,154,849 geotagged images from 2013 to 2015 are 
collected from the official Flickr API (https://www.flickr.com/services/ 
api/) and used for image recognition, with each image including lati
tude, longitude and the specific date taken. A series of preprocessing 
steps are performed to reduce the data redundancy and dominance of 
the extremely active users to mitigate heterogeneity, as stated in our 
previous work (Chen et al., 2019). Scene features are extracted by a pre- 
trained Places365 convolutional neural network model, an image 
recognition technique designed for identifying 365 scene-related cate
gories or places (Zhou et al., 2018). This model is used because it is 
trained based on the Flickr dataset and its high performance that the 
recognised accuracy of the top five categories approaches 85.08% (Zhou 
et al., 2018). Furthermore, its capability to identify scenario-based 
places from the built environment has gone beyond many other image 
recognition models, such as YOLO (You Only Look Once), trained on 20 
objects that include office furniture, animals and food-related cate
gories. Through this procedure, each image is assigned to return only 
five scenario-based categories with identified probabilities from high to 
low, where a class with higher percentage values implies more signifi
cant features of that image. 

To investigate the possible impacts of features encoded in images on 
houses, we select images georeferenced within the same 800 m distance 
of houses, subsequently quantifying the probability of each scene 
characteristic based on the corresponding space and time. However, 
several scene features may have little impact on housing prices, such as 
glaciers, icebergs, cliffs, volcanoes and tundra these countryside natural 
scenes, leading to higher computational costs and lower model perfor
mance. Thus, feature selection is implemented to select a subset of 365 
scene features that are important and relevant to housing prices that are 
included in the traditional modelling framework. Given the limited 
computational capacity and possible multicollinearity among features 
(Li et al., 2017), RF feature importance is employed to select features by 
their built-in mean decrease impurity (MDI) function. MDI refers to the 
total decrease in node impurity averaged over all ensemble trees, where 
impurity represents a function weighted by the proportion of samples 
reaching that node (Pedregosa et al., 2011). The impurity measures the 
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goodness of any node of the decision trees (i.e., variance for regression). 
The less impurity, the purer the node and the better the prediction ac
curacy (Louppe, 2014). The logic of this feature selection mechanism is 
that when training a tree, the more a feature decreases the impurity, the 
more influential the feature is. For many decision trees in an RF, the 
impurity decrease of each feature can be averaged across trees to 
compute the final importance of the variable (Breiman, 2001). To select 
more robust and vital features, the standard deviation of variance is set 
as a threshold to drop features that are lower than the value. Fig. 2 
displays seven more important scene features selected (blue bars) using 
RF feature importance after feature selection. 

Additionally, the coefficient of multiple correlation R is employed to 
measure the strength of the association between a given (dependent) 
variable and a set of (independent) variables. It ranges from 0 to 1, with 
1 denoting the strongest correlation, whereas a value of 0 indicates no 
correlation between a combination of independent variables and the 
dependent variable (Cohen, 1988). This coefficient can be easily 
computed as the square root of the coefficient of determination of 
multiple linear regression. In this case, seven more important scene 
features are combined to build a multiple linear regression model 
following Equation (1) in Section 4.1 to measure the total association 
between seven image feature variables and one housing price variable. 
The computed coefficient equals 0.33, indicating a modest correlation 
between selected image features and house prices. Therefore, only the 
seven most relevant image features will be added to the house price 
estimation models. The average probability of these image features 
within 800 m of houses is computed to mitigate the impact of image 
density dispersion. Properties without images around were excluded, 
which are primarily distributed at Newham and Greenwich and account 
for 12% of the data coverage. 

After several stages of data preprocessing, a total of 23 independent 
variables, including traditional housing features and scene features, are 
finally selected to explore whether images can be considered as an 
additional data source and how they influence the housing market. The 
overall descriptions and statistics of the three types of features are dis
played in Table 1. 

4. Methodology framework 

A method framework (see Fig. 3) is proposed to explore two aspects 
of housing price estimation: (1) whether geotagged images are an effi
cient data source to unpack the impacts of housing prices and (2) 
whether machine learning ensemble methods are more promising tools 
in terms of performance and interpretation compared with a traditional 
HPM. This framework consists of three phases: feature fusion, model
ling, and evaluation and interpretation. 

Models will be trained on two sets of variables through feature 
fusion. Traditional variables include 16 basic housing structural and 
location features, and enriched variables include all 23 features sum
marised in Table 1. Three models are employed, including one HPM that 
serves as a baseline and two machine learning models: RF and GBM, to 
further train on features identified through baseline. The estimations 
will then be analysed and evaluated through model performance and 
interpretation. Model performance evaluates how well the constructed 
models fit the observations, and model interpretation unpacks the re
lationships between all independent variables and housing prices. The 
best model will be recognised based on prediction performance and 
interpretation. The remainder of this section summarises each technique 
and procedure involved in the framework. 

4.1. Baseline hedonic price model 

A parametric HPM is first used as a benchmark in our approach. The 
HPM assumes a linear functional form described by a group of param
eters—the coefficients of independent variables (Horowitz & Lee, 2002). 
Although nonparametric approaches such as kernel estimates avoid the 

strong linear assumptions underlying the parametric methods, they have 
been criticised for their “curse of high dimensionality” and computa
tional burden. Therefore, a semilogarithmic HPM is selected for its 
intuitive interpretation, ease of use and variation consideration (Sir
mans et al., 2005; Zhang & Dong, 2018). In particular, the property 
transaction price is viewed as the dependent variable, and all features 
are independent variables. Before fitting the models, the input variables 
are standardised to express each variable in the same units (i.e., between 
0 and 1) and thus ease interpretation. The mathematical formula of the 
semi-log hedonic model is displayed in Equation (1): 

LnP = α+
∑

βkCk+ ε (1) 

Ln P refers to the logarithmic form of the transaction price at the 
postcode level, βk is the coefficient of one housing characteristic, where 
k represents the number of independent variables C, α is a constant term, 
and ε is the random error term. 

The mechanism of this model is to find the optimal coefficients for all 
the variables that minimise the error. The interpretation is relatively 
straightforward: the estimated coefficients represent the marginal 
change of the dependent variable when a unit increase occurs in one of 
the independent variables. However, this approach is highly sensitive to 
multicollinearity and outliers and limited to capturing nonlinear re
lationships and large numbers of variables (Sirmans et al., 2005). As a 
result, the variance inflation factor (VIF) is used to check for multi
collinearity in our model trained with all 23 independent variables. VIF 
is a measure of collinearity and correlation among predictor variables 
within a multiple regression model. A rule of thumb is that if the VIF is 
larger than the threshold of 10, then the variable is considered highly 
colinear and correlated with the other variables (Kutner et al., 2004). 

4.2. Machine learning methods 

Both RF and GBM are ensemble machine learning methods that 
combine the predictions of several base estimators on a given algorithm 
to gain better robustness than a single estimator (Pedregosa et al., 2011). 
RF generates many uncorrelated decision trees based on averaging 
random selection of predictor variables from the training set (Breiman, 
2001). GBM trains a series of models in a stagewise, additive, and 
sequential manner that optimises arbitrary differentiable loss functions 
(Friedman, 2001). Unlike RF, where each tree can be trained indepen
dently, each tree in GBM is determined by previous outputs. These two 
methods have been commonly used because they handle more extensive 
features, high accuracy performance, and robustness to skewed distri
butions, multicollinearity, outliers, and missing values (Pal, 2017). On 
the other hand, these two models have stated usability in housing price 
studies and higher interpretability than other machine learning models, 
such as neural networks (Hu et al., 2019; Yao et al., 2018). Their joint 
pitfalls are computationally expensive and may overfit particularly 
noisy datasets. 

A common characteristic in machine learning methods is that they 
are parameterised by a range of hyperparameters, which are required to 
be tuned and optimised to yield an optimal model that minimises some 
predefined loss function (Claesen & Moor, 2015). Manual and grid 
searches are the most frequently used hyperparameter optimisation 
methods; however, they have difficulties reproducing results and suffer 
from too many trials for dimension exploration. (Bergstra & Bengio, 
2012). Hence, random search, where each parameter setting is sampled 
independently from a specified distribution over the cross-validated 
search, is implemented due to its primarily high efficiency and less 
computational time. To obtain a reasonably decent set of values of the 
hyperparameters, either a distribution over possible and random values 
or a list of discrete choices can be specified for each parameter. The 
important parameters to adjust for RF are the number of trees, the 
minimum number of samples at a leaf node and the number of features 
for a split. In the case of GBM, the parameters are the number of boosting 
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stages, learning rate, the minimum number of samples at a leaf node and 
to split the node, the maximum depth to limit the number of nodes 
(Pedregosa et al., 2011)5. Fivefold cross-validation, a typical split-train- 
test strategy that minimises the estimator error, is used in our random 
search. More details of cross-validation are explained in Section 4.3. The 
optimised hyperparameters of RF and GBM are shown in the footnote. 

4.3. Model performance and interpretability 

In any modelling context, validation and performance are crucial to 
evaluate how accurate and reliable the constructed models are (Hastie 
et al., 2009). A set of visualisation tools are used to validate the pre
diction and three popular statistical metrics, mean absolute error (MAE), 
mean squared error (MSE), and the coefficient of determination (R2), to 
evaluate the model performance. Combining these three metrics implies 
the model’s predictive power, and independent variables describe the 
variation of the observed variable. MAE and MSE compute the average 
absolute and squared error or loss between the predicted and the actual 
values, which are always positive and represent better predictions the 
smaller their value. R2 is an index representing the percentage of the 
variance in the output explained by predictors (i.e., independent vari
ables) in a regression model, which ranges from 0 to 1 and where larger 
values represent more explanatory models. 

To avoid overfitting and unreliable results, cross-validation (CV) is 
performed to evaluate all model performances on our limited data 
sample. The basic approach is called k-fold CV, which divides the dataset 
into the number of k nonoverlapping partitions (James et al., 2013). For 
each k group or fold, a model is trained on k-1 of the folds, and the 
remaining part of the data is treated as testing data to measure the 
model’s performance. The resulting measure is often summarised with 

the average values computed in the k loop. Considering the data size of 
this study and the computational cost, a commonly used k = 5 (Arribas- 
Bel et al., 2017; James et al., 2013) is configured to calculate cross- 
validated MSE and R2 then the model with better performance will be 
recognised for interpretation. 

Since RF and GBM cannot be interpreted by examining regression 
coefficients and significance due to their nonparametric nature, per
mutation importance and accumulated local effects (ALE) plots were 
utilised to explore the relationships between variables and the obser
vations. These two methods can measure the relationship between input 
factors and the observations. Permutation importance is calculated in 
two steps: first, a baseline metric of the estimator is evaluated on the 
training dataset; second, a single feature column from the validation set 
is permuted, and the metric is recomputed (Breiman, 2001; Pedregosa 
et al., 2011). The importance is the difference between the baseline and 
the drop in overall metric by permuting the column. In addition to being 
more reliable, permutation importance can also overcome the problem 
that many unique values can be misleading compared to the traditional 
feature importance method of several ensemble methods. MSE is the 
metric used in this study to measure feature importance. ALE plots 
visually reflect how features affect the prediction of a machine learning 
model on average (Apley & Zhu, 2016). To estimate local effects, the 
feature is divided into many intervals defined by the quantiles of the 
feature distribution to measure their differences in the predictions. The 
ALE value represents the key effect of the feature at a given value 
compared to the average forecast centred at zero. Unlike the more 
popular partial dependence plots (PDPs), which display the marginal 
effect of one or two features on a machine learning prediction model, 
ALE plots are faster, unbiased and a more interpretable tool (Molnar, 
2019). This is because PDPs can significantly bias the estimated feature 
effect if features are correlated, which is the case in our study. 

Fig. 2. The seven most relevant features selected through the feature selection process.  

5 The values for hyper parameters that we use include:RF: n_estimators =
200, min_samples_leaf = 2, max_features= ‘auto’, max_depth = 30;GBM: n_es
timators = 350, learning_rate= 0.1, min_samples_split= 25, min_samples_leaf=
50, and max_depth = 10. 
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5. Results and discussions 

5.1. Model performance 

Fig. 4 visualises the actual and predicted logarithmic house prices of 
HPM, RF and GBM between traditional and enriched variables of house 
price estimation. Fig. 4(a) shows scatter plots of six sets of models, and 
Fig. 4(b) displays their density distribution based on kernel density 
estimation that uses a continuous probability density curve in more di
mensions. Overall, the R2 of all models improve slightly when scene 
features derived from images are considered into the models. The pre
dicted values are undervalued to some extent compared to the observed 
values for all models, particularly for two HPMs that predicted values 
obviously deviate from actual values regardless of whether image fea
tures are added. The larger HPMs gaps in Fig. 4(b) are most likely due to 
the influence of multicollinearity of the models, as discussed in Section 
4.1. The predictions of machine learning models in blue and orange in 
both Fig. 4(a) and (b) appear to fit the observations better than HPM. RF 
and GBM approach actual log prices more when scene features are added 
to independent variables, indicating that models trained RF and GBM fit 
our data well and have better performance than both predictions of 
HPMs regardless of whether images are added to the variables. 

Next, the cross-validated MAE in the units of logarithmic house 
prices, MSE in the square of logarithmic house prices and R2 are 
calculated to reflect generalisation performance, as shown in Table 2. 
The overall performance of the three models improved with slightly 
higher R2, lower MSE and MAE when image attributes were considered. 
The performance of HPM is inferior to RF and GBM, as shown by larger 
MSE, MAE and smaller R2; in contrast, the RF model shows better ac
curacy and robustness, with the highest R2 and smallest MSE and MAE, 
where the entire 23 input variables could explain 66.5% of the variance 
in the observation. This table illustrates the superiority and flexibility of 
the two machine learning models due to their less uncertainty (lower 
MSE and MAE) and greater accuracy (higher R2). Although the im
provements in prediction are not highly significant with additional 
perceived scene features, the results also imply that user-generated 
images of urban surroundings may be used as a supplementary data 
source in house price estimation. 

Since RF with all 23 variables performs better than others, we further 
create a residual map at hexagonal aggregation, shown in Fig. 5, to 
visualise the difference in logarithmic house prices between observa
tions and estimations to gain intuitive insight into the spatial 

Table 1 
Descriptions and statistics of three types of variables for housing prices.  

Categories Variables Descriptions Mean 

Structural 
features 

type_F Dummy variables, 1 if the property 
type is flat  

0.785 

type_S Dummy variables, 1 if the property 
type is semi-detached  

0.025 

type_T Dummy variables, 1 if the property 
type is terraced  

0.183 

new_Y Dummy variables, 1 if the property is 
newly built  

0.128 

tenure_L Dummy variables, 1 if the tenure is 
Leasehold  

0.795 

Location 
(neighbourhood) 
features 

bus_num Number of bus or coach stations 
within 800 m distance  

0.031 

sub_num Number of underground stations 
within 800 m distance  

0.219 

lei_num Number of leisure or sports centres 
within 800 m distance  

0.157 

mel_num Number of medical care centres 
within 800 m distance  

0.187 

sch_num Number of primary schools within 
800 m distance  

2.165 

bus_dis Distance to the nearest bus and coach 
station  

2.174 

sub_dis Distance to the nearest underground 
station  

1.477 

lei_dis Distance to the nearest leisure or 
sports centre  

0.875 

med_dis Distance to the nearest medical care 
centre  

0.918 

sch_dis Distance to the nearest primary school  0.240  

park_area Coverage of parks and gardens within 
800 m distance  

0.048 

Scene features 
(within 800 m 
distance of 
houses) 

plaza Mean probability of images classified 
as plaza  

0.013 

crosswalk Mean probability of images classified 
as crosswalk  

0.008 

palace Mean probability of images classified 
as palace  

0.002 

restaurant Mean probability of images classified 
as restaurant  

0.005 

museum Mean probability of images classified 
as museum  

0.006 

ind_area Mean probability of images classified 
as industrial area  

0.008 

church Mean probability of images classified 
as church  

0.002  

Fig. 3. Overall methodological framework.  
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distribution of the errors. The blue-green and red–orange dots represent 
higher and lower estimations than the actual log house prices. The 
overall residuals of housing prices in Inner London fluctuate around 0 (i. 
e., yellow dots). At the same time, properties distributed in the western 
areas of Inner London (Boroughs of Kensington and Chelsea, West
minster and Camden) have lower estimations than the actual prices, 
implying that the errors located in these areas are difficult to explain by 
our regression model. A possible explanation for this error is that the 
average house prices of these three boroughs are far higher than those of 
the other areas in Inner London, as shown in Fig. 1(a). 

5.2. Model interpretation 

Before looking into the interpretability of RF, which has the best 
performance, it would be good to see how the baseline linear HPM be
haves, in other words, the magnitude of all 23 independent variables. 
This procedure could help us enhance the reliability of the interpretation 
of RF. The effect sizes (coefficient), the significance of estimated vari
ables (p-values) within the 95% confidence interval, and VIF are dis
played in Table 3. The larger the coefficient values, the more marginal 
the changes in the outcome associated with a unit increase in each 
determinant. The p-value less than 0.05 represents that the variable is 
statistically significant for the model. 

Overall, traditional housing features such as the type of house (i.e., 
flat or terraced), the distance to the nearest subway station and whether 
the tenure type is leasehold or freehold (type_F, type_T, sub_dis, ten
ure_L) affect housing prices much more than others and are also statis
tically significant. Most coefficients and significance remain stable 
regardless of whether scene features are considered. Only a minor 
reduction of impacts on the location-type variables was obtained by 

Fig. 4. Visualisation of model fitting at (a) actual and predicted logarithmic housing prices and (b) density distribution of all models, with traditional and 
enriched variables. 

Table 2 
Accuracy and error scores for various models and attributes.  

Metrics Housing attributes only Housing attributes + Image attributes 

HPM RF GBM HPM RF GBM 

R2 0.305 0.619 0.616 0.356 0.665 0.635 
MSE 0.355 0.193 0.189 0.363 0.169 0.185 
MAE 0.453 0.315 0.320 0.439 0.293 0.313  
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introducing scene variables. In addition to the number of subway sta
tions, the number of other POIs, including schools, health centres, retail 
centres and bus stations, has little impact on house prices within a 800 m 
distance. In terms of the scene features, plazas, crosswalks, palaces, 
restaurants, museums and churches have more influence than most 
neighbourhood features identified from POI data and significant 
explanatory power in predicting housing prices. Only the industrial 

scene has no association with house prices based on the coefficient and 
the p-value. Particularly, the flat and terraced type and the shortest 
distance to subway stations and health centres have negative relation
ships with housing prices; the higher the values of these variables are, 
the greater the decrease in housing prices. Conversely, most of the scene 
variables have positive effects on the estimation, which conforms to 
prior knowledge that the more attractive the scenery and robust infra
structure around a house is, the higher the price of the house. 

The calculated VIFs of the property type of flat (35.420), property 
type of terraced (21.481) and tenure type of leasehold (12.596) are 
greater than 10, indicating that these three housing variables are highly 
correlated with each other. Multicollinearity is not a problem for 
nonparametric tree-based methods. Hence, we then turn to the inter
pretation of RF trained on all features. Fig. 6 plots the permutation 
importance scores computed, where the nine red bars and three green 
bars represent more important traditional and image features to the 
prediction that are larger than the median of importance. It is evident 
that the distance to the nearest subway stations within a 800 m distance 
contributes the most to the predictive power of the model, and the other 
four accessibility variables (i.e., the shortest distance to a property) and 
the coverage of parks also have important effects on the estimations. The 
terraced flat and tenure type of leasehold is far more critical than the 
other housing structural features. Relative significant perceived scene 
features are palaces, plazas and crosswalks, conforming to common 
knowledge that attractiveness and accessibility have clear impacts on 
house prices. However, whether the property is new or old and is the 
semi-detached type has almost no association with its housing price. In 
addition, the number of different POIs and infrastructures within a 800 
m distance of the property proves less relevant to the estimation. The 
possible reason for the above outcomes is that a tiny fraction of trans
actions has records for these features during the study period, such as the 
valid values for the degree of new or old and the type of semi-detached 
property only accounting for 10% and 3% of the data, consequently, 
hardly contribute much to the predictive power of the model. 

The overall interpretation of the RF model is similar to that of the 
benchmark HPM except that the RF model captures more significance in 

Fig. 5. Spatial distribution of residuals of actual and predicted log house prices.  

Table 3 
Standardised coefficients of the baseline HPM model with different numbers of 
variables.  

Features 

Traditional housing 
features (16) 

With additional image 
features (23) 

Coefficient P-value Coefficient P-value VIF 

intercept  13.075  0.000  13.075  0.000  
type_F  − 0.315  0.000  − 0.337  0.000  35.420 
type_S  − 0.034  0.000  − 0.036  0.000  4.396 
type_T  − 0.174  0.000  − 0.184  0.000  21.481 
new_Y  0.019  0.000  0.019  0.000  1.059 
tenure_L  − 0.141  0.000  − 0.141  0.000  12.596 
bus_num  − 0.001  0.872  − 0.003  0.315  1.209 
sub_num  − 0.074  0.000  − 0.093  0.000  1.860 
lei_num  0.010  0.013  0.011  0.005  1.777 
medi_num  − 0.023  0.000  − 0.011  0.003  1.764 
sch_num  − 0.004  0.271  − 0.003  0.447  1.653 
bus_dis  − 0.028  0.000  − 0.013  0.000  1.317 
sub_dis  − 0.361  0.000  − 0.316  0.000  2.078 
lei_dis  0.042  0.000  0.041  0.000  1.899 
med_dis  − 0.070  0.000  − 0.031  0.000  1.930 
sch_dis  0.050  0.000  0.049  0.000  1.566 
park_area%  − 0.018  0.000  − 0.016  0.000  1.038 
plaza    0.064  0.000  1.217 
crosswalk    0.053  0.000  1.147 
palace    0.060  0.000  1.209 
restaurant    0.054  0.000  1.080 
museum    0.038  0.000  1.155 
industrial_area    − 0.005  0.070  1.091 
church    0.048  0.000  1.208  
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service accessibility and the coverage of green parks. The more impor
tant input variables are convenient transportation, accessibility of 
essential social infrastructure, the flat property type, the terrace prop
erty type, the tenure type and a few perceived scenes on housing prices. 
The results show that in addition to the conventional influence features 
of housing prices, how people interact with the surrounding environ
ment of properties also impacts housing markets. Compared with the 
neighbourhood features identified through POI data, the image-based 
perceived scene features highlight the significance of the attractive
ness of specific local amenities and places to housing prices. It is the core 
merit of considering perceived scene features into housing prices, 
helping the restructuring and optimisation of residential areas in future 
regional construction, planning and development. 

Fig. 7 displays the ALE plots of the most relevant variables from the 
structural, location, and perceived scene features: the flat, the shortest 
distance to the subway station and perceived palace scenes to explore 
the relationships between variables and estimations further. ALE plots of 
baseline HPM are also included for comparison. The horizontal and 
vertical axes represent the range of variables and accumulated local 
effect values, respectively, and the zero value implies the average pre
diction effect. The overall patterns of ALE plots for both baseline HPM 
and RF are consistent. The features property type of flat and the shortest 
distance to subway stations have negative relationships with the 
observation, while the perceived scene feature of a palace is positively 
associated. The differences between the two models are first linear and 
nonlinear relations, and second, the average prediction of HPM changed 
more than RF with the same increasing values of features. Specifically, 
the average prediction decreases with the rising value of the property 
type of flat, but it flattens out until 0.5 for the rest; the longer the dis
tance to the nearest subway station, the lower the prediction power. The 
perceived scene feature of a palace has a strong positive effect on the 
prediction for HPM while a weak positive impact on the prediction for 
RF, which corresponds to the relatively low importance of palace for the 
model prediction in Fig. 6. 

The results suggest that a shorter distance to subway stations, less 

opportunity to live in flat property types, and more potential to live next 
to attractive scenes such as palaces can significantly increase local real 
estate prices. The findings could be informative for policymakers to 
formulate equitable housing policies and help urban governance based 
on the physical environment and the popularity in terms of how people 
perceive and interact with a neighbourhood. Additionally, dynamic 
housing price changes are significant for local planners, for example, to 
develop a healthy housing market through neighbourhood public ser
vice configuration and distribution and more affordable homes to a 
broader population. 

6. Conclusions 

This paper explores the potential of geotagged social media images 
for monitoring housing prices and the superiority and flexibility of using 
machine learning methods to understand the impacts of various features 
on the housing market. Multiple datasets are employed to extract three 
types of elements: structural, location and scene attributes. With these, 
two machine learning methods, RF and GBM, are used and compared to 
the traditional house price estimation model HPM. The results illustrate 
that RF proved to be the best model based on performance, and it is also 
as interpretable as HPMs through a series of visualisations. In summary, 
the empirical results indicate that scene features extracted from geo
tagged user-generated images could add minor value to house price 
estimation in a sense. Properties surrounded by well-equipped amenities 
and natural scenes tend to be considered more attractive and have a 
higher value. 

The main contributions of this research are twofold. On the one 
hand, we uncovered the possible potential of user-generated social 
media images in house price estimation. Although the marginal 
improvement on the model performance, user-generated images could 
be used as a supplementary data source for house price estimation if 
human perception is considered. This filled in current research gaps that 
neighbourhood features identified from POIs and street view data were 
unable to capture how people experienced and interacted with the 

Fig. 6. Permutation feature importance based on different input variables.  
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physical environment. By including urban scene features extracted by 
various citizens, the impacts of the popularity of scenes on the housing 
market are revealed to a certain extent. On the other hand, the meth
odological framework that integrates baseline HPM with two machine 
learning algorithms is insensitive to multicollinearity and proven to 
have more accurate performance and equivalent interpretability, 
avoiding the usual black-box problems attributed to common machine 
learning algorithms. This is also applicable to other traditional 
empirical-statistical methods that consider spatial heterogeneity, such 
as geographically weighted regression, which has a high dependence on 

prior knowledge and relatively poor capability of addressing multiscale 
effects (Hu et al., 2019). 

From the perspective of developing a sustainable city, in addition to 
traditional datasets, stakeholders may also consider user-generated im
ages as a supplementary dataset when assessing the housing transaction 
market. This data source can capture residents’ interactions with the 
urban environment, reflecting their interests and perceptions of urban 
scenes. The patterns may be helpful to real estate developers for early- 
stage site selection of residential buildings. Living environments with 
good amenities, such as convenient transportation, accessibility of green 

Fig. 7. Accumulated local effects plots for partial representative features.  
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space, recreational places, and distinctive scenes, such as plazas, palaces 
and crosswalks, are relatively important factors in house price estima
tions. Furthermore, the government could pay more attention to the 
adjustment and design of housing development based on various facil
ities and surrounding urban features. It could assist in improving the 
vitality of the area surrounding a property, which subsequently in
fluences people’s willingness to buy that property. 

Despite the contributions, it should be noted that the limitations of 
Flickr data in representation remain unresolved. First, like other user- 
generated social media data, the Flickr platform is being used in a 
self-selection process (Goodchild, 2007), implying that the number of 
users does not represent all age groups or genders. This has been 
demonstrated in a recent survey that the dominant age groups for these 
platforms are teenagers or middle-aged males (Barnhart, 2021). As a 
result, the perception features extracted from Flickr were based mainly 
on specific population groups that were not sufficiently representative. 
Second, the limitation of spatial heterogeneity and lack of data in a few 
neighbourhoods cannot be overlooked. It implies that more photographs 
existed of tourist attractions and landmarks as shown in Fig. 1b, sug
gesting our models are dominantly built on houses with more iconic 
scenes surroundings rather than all houses evenly in Inner London. Even 
if a series of data processing steps have been taken in Section 3.2, the 
underlying data bias of spatial heterogeneity in Flickr is still included. 
To minimise this limitation, combining other user-generated imagery 
data to extract features, such as Google Photos and Instagram, might be 
possible. The data coverage and representation could be possibly 
improved by linking diverse datasets through aggregated spatial and 
temporal scales. 

This research could be extended and improved in a few ways. First, 
other image recognition methods, such as image segmentation, can be 
used to extract more precise scene features for our housing price esti
mation model. Second, additional datasets could be used to capture 
possible impact factors on real estate prices, such as the data including 
more housing structural features such as the size or the number of 
bedrooms for a single house, interior visual images (Ahmed & Moustafa, 
2016) or street views imagery. Furthermore, more cities could be 
included to compare the relationships and differences. For example, do 
identical impact factors influence local housing prices and are there any 
distinctive scene features for each city? Moreover, the time dimension 
could be further considered to unpack the dynamic impacts of housing 
prices, helping monitor the changes in the housing market and regu
lating housing prices over time. 

References 

Ahmed, E. H., & Moustafa, M. (2016). House price estimation from visual and textual 
features. IJCCI 2016 – Proceedings of the 8th International Joint Conference on 
Computational Intelligence, 3(Ijcci), 62–68. https://doi.org/10.5220/ 
0006040700620068. 

Anglin, P. M., & Gençay, R. (1996). Semiparametric estimation of a hedonic price 
function. Journal of Applied Econometrics, 11(6), 633–648. https://doi.org/10.1002/ 
(SICI)1099-1255(199611)11:6<633::AID-JAE414>3.0.CO;2-T 

Apley, D. W., & Zhu, J. (2016). Visualizing the Effects of Predictor Variables in Black Box 
Supervised Learning Models. http://arxiv.org/abs/1612.08468. 

Arietta, S. M., Efros, A. A., Ramamoorthi, R., & Agrawala, M. (2014). City forensics: 
Using visual elements to predict non-visual city attributes. IEEE Transactions on 
Visualization and Computer Graphics. https://doi.org/10.1109/TVCG.2014.2346446 

Arribas-Bel, D., Patino, J. E., & Duque, J. C. (2017). Remote sensing-based measurement 
of Living Environment Deprivation: Improving classical approaches with machine 
learning. PLoS ONE. https://doi.org/10.1371/journal.pone.0176684 

Baker, E., Bentley, R., Lester, L., & Beer, A. (2016). Housing affordability and residential 
mobility as drivers of locational inequality. Applied Geography. https://doi.org/ 
10.1016/j.apgeog.2016.05.007 

Barkham, R., Bokhari, S., & Saiz, A. (2018). Urban Big Data: City Management and Real 
Estate Markets. https://mitcre.mit.edu/wp-content/uploads/2018/01/URBAN-DATA 
-AND-REAL-ESTATE-JAN-2018-1.pdf. 

Barnhart, B. (2021). Social media demographics to inform your brand’s strategy in 2021. 
https://sproutsocial.com/insights/new-social-media-demographics/. 

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. 
Journal of Machine Learning Research. 

Biljecki, F., & Ito, K. (2021). Street view imagery in urban analytics and GIS: A review. 
Landscape and Urban Planning. https://doi.org/10.1016/j.landurbplan.2021.104217 

Breiman, L. (2001). Random forests. Machine Learning. https://doi.org/10.1023/A: 
1010933404324 

Cai, W., & Lu, X. (2015). Housing affordability: Beyond the income and price terms, using 
China as a case study. Habitat International. https://doi.org/10.1016/j. 
habitatint.2015.01.021 

Causa, O., & Pichelmann, J. (2020). Should I stay or should I go? Housing and residential 
mobility across OECD countries. Economics Department Working Papers. 

Chen, M., Arribas-Bel, D., & Singleton, A. (2019). Understanding the dynamics of urban 
areas of interest through volunteered geographic information. Journal of 
Geographical Systems. https://doi.org/10.1007/s10109-018-0284-3 

Chen, M., Arribas-Bel, D., & Singleton, A. (2020). Quantifying the characteristics of the 
local urban environment through geotagged flickr photographs and image 
recognition. ISPRS International Journal of Geo-Information, 9(4). https://doi.org/ 
10.3390/ijgi9040264 

Chen, W. Y., & Jim, C. Y. (2010). Amenities and disamenities: A hedonic analysis of the 
heterogeneous urban landscape in Shenzhen (China). Geographical Journal. https:// 
doi.org/10.1111/j.1475-4959.2010.00358.x 

Chen, Y., Liu, X., Li, X., Liu, Y., & Xu, X. (2016). Mapping the fine-scale spatial pattern of 
housing rent in the metropolitan area by using online rental listings and ensemble 
learning. Applied Geography. https://doi.org/10.1016/j.apgeog.2016.08.011 

Choumert, J., Stage, J., & Uwera, C. (2014). Access to water as determinant of rental 
values: A housing hedonic analysis in Rwanda. Journal of Housing Economics. https:// 
doi.org/10.1016/j.jhe.2014.08.001 

Chung, R. Y. N., Chung, G. K. K., Gordon, D., Mak, J. K. L., Zhang, L. F., Chan, D., … 
Wong, S. Y. S. (2019). Housing affordability effects on physical and mental health: 
Household survey in a population with the world’s greatest housing affordability 
stress. Journal of Epidemiology and Community Health. https://doi.org/10.1136/jech- 
2019-212286 

Claesen, M., & De Moor, B. (2015). Hyperparameter Search in Machine Learning. htt 
ps://arxiv.org/abs/1502.02127. 

Cohen, J. (1988). Statistical Power Analysis for the Behavioural Science (2nd Edition). In 
Statistical Power Anaylsis for the Behavioral Sciences. 

Comber, S., Arribas-Bel, D., Singleton, A., & Dolega, L. (2020). Using convolutional 
autoencoders to extract visual features of leisure and retail environments. Landscape 
and Urban Planning. https://doi.org/10.1016/j.landurbplan.2020.103887 

Doersch, C., Singh, S., Gupta, A., Sivic, J., & Efros, A. A. (2012). What makes paris look 
like Paris? ACM Transactions on Graphics. doi, 10(1145/2185520), 2185597. 

Dong, G., Wolf, L., Alexiou, A., & Arribas-Bel, D. (2019). Inferring neighbourhood quality 
with property transaction records by using a locally adaptive spatial multi-level 
model. Computers, Environment and Urban Systems.. https://doi.org/10.1016/j. 
compenvurbsys.2018.09.003 
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