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HIGHLIGHTS

e The contribution of user-generated images to house price estimation is minor.

e User-generated images may supplement house price estimation to capture perception.
o Flickr images are employed for perceived scene features using image recognition.

e Important housing and image features are identified and visualised.

e Random forest exceeds hedonic price model in performance and interpretability.

ARTICLE INFO ABSTRACT
Keywords: Determinants of housing prices are particularly significant for monitoring and understanding housing prices.
User-generated images Traditional variables are measured through official statistics or questionnaire surveys, which are labour intensive

Machine learning
House price estimation
Perception

Geographic data science
Urban planning

and time-consuming. New forms of data, such as point of interest or street view imagery, have been used to
extract housing location and neighbourhood features, but they cannot capture how different individuals rec-
ognised and evaluated the properties nearby, which may also be relevant in the house price estimation.
Therefore, this study investigates whether user-generated images may be used to monitor and understand
housing prices and how they influence real estate values. Within this context, perceived scenes features are
extracted and quantified to blend with commonly used determinants of housing prices. Two machine learning
algorithms, random forest and gradient boosting machines, are utilised and deployed for integration with a
typical housing price modelling-hedonic price model. By comparing the performance and interpretability of
different models, the relative importance of features and how they influence the estimation power of the models
is visualised and analysed. The findings suggest that random forest predictions perform the best and are inter-
pretable, with geotagged Flickr images adding 4.6% to the model’s accuracy (R?) from 61.9% to 66.5%.
Although user-generated images increase minor value in house price estimation, they may be used as a sup-
plementary data source to capture perception features for house price estimation. This could help the restruc-
turing and optimisation of residential areas in future regional construction, planning and development.

1. Introduction Habitat, 2020), which has brought substantial challenges to various
dimensions of the social fabric, including, but not limited to, urban and
Housing affordability has become a social issue across the globe (UN- social inequality (Liu et al., 2020), mobility (Causa & Pichelmann, 2020)
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and health and wellbeing (Chung et al., 2019). As a result, government
agendas have prioritised monitoring and analysing housing prices to
provide suggestions for house purchasers, researchers, and policymakers
in urban planning and real estate, thereby building a healthy housing
market (Hu et al., 2019). However, the determinants of housing prices
are complicated and multidimensional; others remain uncertain (Nistor
& Reianu, 2018; Wang et al., 2017; Zhang et al., 2012). The complexity
of housing prices hinders policymakers from formulating and delivering
equitable and sustainable planning for housing market development and
urban environment improvement (Yao et al., 2018).

Determinants of housing prices can be understood from two scales.
First, at the macroscale, economic bases generally influence housing
prices (Wang et al., 2017), such as population, household income, and
building costs at the administrative or city level (Baker et al., 2016; Cai
& Lu, 2015). Second, on the microscale, surrounding environmental and
social characteristics become dominant factors since urban residents are
affected by common macroeconomic variables (Hu et al., 2019). Many
studies have investigated the determinants of housing prices within
intraurban settings, summarised into three types: structural features,
location features, and neighbourhood features (Xiao et al., 2017).
Structural features refer to the features related to the property itself,
such as the type of property or the age of the house (Law et al., 2019).
Location features reflect characteristics of the property’s geographic
location, such as the distance to the city centre or retail centre (Zhang &
Dong, 2018). Neighbourhood features can be viewed as the availability
and accessibility of several critical urban amenities or landscapes, such
as landscape features, urban greenery, and health care services (Jim &
Chen, 2006).

Traditionally, these influential characteristics of housing prices are
obtained primarily through official statistics, proprietary listings and
questionnaire surveys (Granziera & Kozicki, 2015), which are costly,
labour intensive, time-consuming, and may not be readily available to
the general public. With the increased availability of emerging new data
and the rapid advancements in computational power, extracting valu-
able features from multidimensional data has become economically
affordable and technically feasible (Singleton et al., 2017). Numerous
studies have extracted features, particularly neighbourhood features, to
analyse housing prices through new forms of data such as points of in-
terest (POIs) collected from social media platforms or mobile sensors
(Hu et al., 2019; Wu et al., 2016; Yao et al., 2018).

Emerging studies have centred on extracting perceptions to under-
stand the driving factors of housing or rental prices, primarily through
street-view imagery (Han & Lee, 2018; Hughes et al., 2016; Law et al.,
2020; Yang et al., 2021). Perceptions extracted from street view images
may be considered an objective reflection of the urban physical envi-
ronment. However, these perceptions cannot imply what people care
about or the interaction between humans and the built environment in
the real world. Unlike street view imagery, user-generated geotagged
photographs (i.e., Flickr imagery in this study) can directly capture
people’s perception of the built environment (Chen et al., 2020). These
photographs are collected, derived, and shared by different and
numerous individuals, reflecting their preferences on the built envi-
ronment at a particular time and, in aggregate, suggesting how the city is
collectively perceived. By extracting characteristics from geotagged
photographs taken surrounding properties, more appealing human-
perceived scenes may be identified, which we hypothesise are likely to
influence property values more than other factors nearby. As such, user-
generated geotagged photographs are considered to capture such po-
tential impacts of perceived scenes representing distinctive place char-
acteristics of the city evaluated and identified by different individuals
(Zhou et al., 2014). These are relevant driving factors in housing market
valuation and may help stakeholders in multiple fields. For instance,
such images can be meaningful for local authorities to understand what
scenes make a city more attractive (Chen et al., 2020), for government
and urban planners to facilitate the revitalisation of residential neigh-
bourhoods (Lu, 2018), or potentially as sources of inspiration for urban
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designers (Barkham et al., 2018).

Within this context, this study aims to explore whether user-
generated geotagged images can be taken into consideration in terms
of housing price estimations and how they influence real estate values.
To achieve this, a Places365 convolutional neural network (CNN)
trained by Zhou et al. (2018) is configured to quantify and identify
perceived scenes from geotagged Flickr photographs. This model allows
us to blend these perceived scenes with standard housing price features
to explore whether geotagged Flickr images impact housing prices. In
addition to the traditional hedonic price model (HPMs), two interpret-
able machine learning algorithms, random forest (RF) and gradient
boosting machines (GBM), are also trained and deployed to be compared
in performance and interpretation. The novelty of this research is
depicted in two main aspects. On the one hand, user-generated geo-
tagged images have feasible prospects in house price estimation. This
aspect remains largely unexplored in the literature that extracts neigh-
bourhood features of housing prices from physical POIs data rather than
actual perceptions from individuals. On the other hand, RF and GBM are
integrated with traditional and widely used HPMs to identify features
that affect housing prices. By comparing the performance and inter-
pretability of different models, the relative importance of features and
how they influence the estimation power of the models are quantified
and identified.

This research could provide helpful references for stakeholders, i.e.,
an additional data source (i.e., geotagged Flickr) for real estate asses-
sors, a site selection strategy for real estate developers and better
adjustment and optimisation of housing policy for the government. The
remainder of the study is structured as follows. Section 2 reviews models
related to housing price estimation and the use of images employed in
the urban perception field. The following section describes multiple
datasets collected and processed to obtain housing structural, location
and perceived scene features for the estimation models. Section 4 pre-
sents the overall method framework used and each technique and pro-
cedure implemented in this study. The experimental results and
discussion are reported in Section 5. Finally, Section 6 concludes the
scientific and practical contributions, limitations and further works of
this study.

2. Literature review
2.1. House prices models

A typical and frequently used theoretical model to identify and
analyse features that influence housing value is the HPM, which has
been used in various studies (Chen & Jim, 2010; Zhang & Dong, 2018;
Hamilton & Morgan, 2010; Wen & Tao, 2015). This model measures
how each of the potential features affects housing prices, playing a role
in uncovering the intrinsic value of a single attribute based on the
estimation of the marginal changes in observed prices (Rosen, 1974).
For instance, Hamilton and Morgan (2010) integrated LiDAR data and
geographic information science into an HPM to estimate the desire to
purchase houses with beach access and view. Wen and Tao (2015)
employed an HPM to examine the polycentric urban structure in
determining housing prices. However, the HPMs have been criticised for
their strong assumptions on the linear relation between features and
prices and their inability to handle spatial heterogeneity (Anglin &
Gencay, 1996; Dubé & Legros, 2014). Although alternative methods
such as spatial econometrics and geographically weighted regression
have been proposed to incorporate spatial effects (Choumert et al., 2014;
Huang et al., 2017), they require prior knowledge and the assumption of
linear relationships between attributes and housing prices and cannot
address multiscale effects well (Hu et al., 2019). As a result, to overcome
the above issues, more recent studies have turned to machine learning
techniques in housing research. Some have compared the model per-
formance among multiple regression approaches to determine better
models for real estate price estimation (Chen et al., 2016; Hu et al.,
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2019; Park & Bae, 2015), and others have proposed improvements of
original models or a combination of two models in housing studies
(Wang et al., 2014; Yao et al., 2018; Hu et al., 2019). These works have
proven the usability and advantage of machine learning methods in
forecasting housing prices due to their fit for nonlinear relationships and
better prediction accuracy over traditional HPMs. However, the
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interpretation and visualisation of machine learning results remain
limited, requiring further investigation.

2.2. The use of images in urban perceptions

Scientists have claimed that a physical or mental image is an
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Fig. 1. The spatial distribution of (a) the average housing prices and (b) the percentage of Flickr imagery datasets at hexagonal aggregation in Inner London
(2013-2015) (Note: For better visualisation, hexagons with less than 346 Flickr photographs are not plotted on the map, which does not represent there is no Flickr

photograph at these areas).
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intuitive and direct perspective for capturing the human perception of a
city (Ittelson, 1978; Lynch, 1960). However, as previous studies pri-
marily relied on qualitative analysis, such as visual surveys and in-
terviews (Nasar, 1990; Scott, 1998), quantitative measurements
remained limited until the technological advances in computer vision
revolutionised the field a decade ago. Since then, an increasing number
of researchers have utilised images in urban perception studies (Biljecki
& Ito, 2021; Ibrahim et al., 2020). Some are interested in the identifi-
cation of visual representations in the city (Chen et al., 2020; Comber
etal., 2020; Doersch et al., 2012; Zhang et al., 2018), and others focus on
quantifying perceptual characteristics of the city or on their relation-
ships with nonvisual socioeconomic attributes, such as population
density and crime rate (Arietta et al., 2014; Dubey et al., 2016; Khosla
et al., 2014; Naik et al., 2014; Salesses et al., 2013). These works mea-
sure the perception of places through varying image recognition tech-
niques, while they are unable to reflect different people’s interactions
and perceptions of a place because they are usually not sourced from
varying individuals.

Taking the above literature into consideration, this study seeks to
exploit the potential of image-based social media (i.e., Flickr photo-
graphs) to analyse housing price studies, aiming to uncover whether
social media images can be used to explore the environmental impacts
on property nearby and how these perceptual features affect housing
values.

3. Data acquisition and processing

This study parimarily used three datasets. The first two encompass
traditional housing attributes, including structural, location and neigh-
bourhood features of housing. The third includes geotagged images
collected from the social media platform Flickr, capturing scenes around
properties. This study focuses on London as a case study, as it provides a
reasonable degree of Flickr usage. To obtain a higher density of images
and reduce spatial heterogeneity, Inner London is selected since a large
volume of Flickr images (73%) fall into this area compared to Outer
London. The datasets are collected from 2013 to 2015, when Flickr users
were most active, based on the number of photographs uploaded. Fig. 1
shows the density distribution of the average housing price transactions
(a) and the percentage of Flickr images (b) in Inner London at hexagonal
aggregations, calculated at hexagon length of 220 m. The average prices
in Fig. 1(a) display a decreasing pattern from the western boroughs of
Kensington and Chelsea to Newham in the east. Fig. 1(b) depicts the
percentage of Flickr density larger than 0.03% of total data (i.e., 346
Flickr photographs), diminishing from the highest percentage in eastern
Kensington and Chelsea to the rest of Inner London.

3.1. Traditional housing features

Structural features are obtained from housing price data published
by the UK HM Land Registry (HM Land Registry, 2019), which has
tracked property sales in England and Wales monthly since 1995. The
original dataset collected for London includes 226,332 property trans-
actions within the 2013 to 2015 period. The dataset is subsequently
cleaned based on Dong et al. (2019), which only keeps properties sold
for total market values, as repossessions or buy-to-lets do not reflect real
estate market values. Since all housing structural features are categorical
data, we quantified them into indicator variables for each category.
Additionally, a georeferencing process is used to assign spatial co-
ordinates to all postcode addresses of houses to identify neighbourhood
and perceived scene features. Furthermore, as this study only focuses on
Inner London, the data outside the study area are removed. After these
preprocessing steps, 137,132 property transaction records remained,
with each containing property transaction price, the postcode address,
the spatial coordinates, the date of transfer, the property type, whether
the property is new or old, and the tenure type.

Neighbourhood and location features are collected from POIs data
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and open greenspace data published by the Ordnance Survey (Ordnance
Survey, 2020). As demonstrated in the literature reviewed above, buyers
tend to purchase houses with perfect amenities that relate to the area
where it is located, such as convenient transportation, easy access to
social infrastructure and access to open spaces. Therefore, a spatial
query is conducted to measure the number of buses, underground sta-
tions, schools, medical (i.e., health) care, and entertainment centres
within 800 m of each house and the distance from one house to the
nearest amenities. Furthermore, areas of green space within 800 m of
houses are also calculated following evidence of their relevance in
determining housing values (Hu et al., 2019; Sirmans et al., 2005). In
particular, the 800 m Euclidean distance is used as a threshold because it
was considered a pedestrian and cycling-friendly distance for residents
in a neighbourhood (Liu et al., 2020).

3.2. Scene (image) features

Scene features are identified from geotagged social media images
collected from Flickr, an online photo-sharing community with over 90
million monthly users (Smith, 2020). Although Flickr data have some
biased aspects such as possible GPS bias of image geolocation, the bias of
skewed representation of landmarks and, most importantly, self-
selection, their usability in identifying representative urban character-
istics is powerful and has been demonstrated by many studies (Chen
et al., 2019; Kisilevich et al., 2010; Seresinhe et al., 2018; Zhou et al.,
2014). Furthermore, the extensive coverage of Flickr data for Inner
London has enabled both iconic landmarks such as towers and bridges as
well as daily life scenes such as bars and conference centres to be
identified (Chen et al., 2020), further illustrating the potential usability
of Flickr images in this study.

A total of 1,154,849 geotagged images from 2013 to 2015 are
collected from the official Flickr API (https://www.flickr.com/services/
api/) and used for image recognition, with each image including lati-
tude, longitude and the specific date taken. A series of preprocessing
steps are performed to reduce the data redundancy and dominance of
the extremely active users to mitigate heterogeneity, as stated in our
previous work (Chen et al., 2019). Scene features are extracted by a pre-
trained Places365 convolutional neural network model, an image
recognition technique designed for identifying 365 scene-related cate-
gories or places (Zhou et al., 2018). This model is used because it is
trained based on the Flickr dataset and its high performance that the
recognised accuracy of the top five categories approaches 85.08% (Zhou
et al., 2018). Furthermore, its capability to identify scenario-based
places from the built environment has gone beyond many other image
recognition models, such as YOLO (You Only Look Once), trained on 20
objects that include office furniture, animals and food-related cate-
gories. Through this procedure, each image is assigned to return only
five scenario-based categories with identified probabilities from high to
low, where a class with higher percentage values implies more signifi-
cant features of that image.

To investigate the possible impacts of features encoded in images on
houses, we select images georeferenced within the same 800 m distance
of houses, subsequently quantifying the probability of each scene
characteristic based on the corresponding space and time. However,
several scene features may have little impact on housing prices, such as
glaciers, icebergs, cliffs, volcanoes and tundra these countryside natural
scenes, leading to higher computational costs and lower model perfor-
mance. Thus, feature selection is implemented to select a subset of 365
scene features that are important and relevant to housing prices that are
included in the traditional modelling framework. Given the limited
computational capacity and possible multicollinearity among features
(Li et al., 2017), RF feature importance is employed to select features by
their built-in mean decrease impurity (MDI) function. MDI refers to the
total decrease in node impurity averaged over all ensemble trees, where
impurity represents a function weighted by the proportion of samples
reaching that node (Pedregosa et al., 2011). The impurity measures the
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goodness of any node of the decision trees (i.e., variance for regression).
The less impurity, the purer the node and the better the prediction ac-
curacy (Louppe, 2014). The logic of this feature selection mechanism is
that when training a tree, the more a feature decreases the impurity, the
more influential the feature is. For many decision trees in an RF, the
impurity decrease of each feature can be averaged across trees to
compute the final importance of the variable (Breiman, 2001). To select
more robust and vital features, the standard deviation of variance is set
as a threshold to drop features that are lower than the value. Fig. 2
displays seven more important scene features selected (blue bars) using
RF feature importance after feature selection.

Additionally, the coefficient of multiple correlation R is employed to
measure the strength of the association between a given (dependent)
variable and a set of (independent) variables. It ranges from 0 to 1, with
1 denoting the strongest correlation, whereas a value of 0 indicates no
correlation between a combination of independent variables and the
dependent variable (Cohen, 1988). This coefficient can be easily
computed as the square root of the coefficient of determination of
multiple linear regression. In this case, seven more important scene
features are combined to build a multiple linear regression model
following Equation (1) in Section 4.1 to measure the total association
between seven image feature variables and one housing price variable.
The computed coefficient equals 0.33, indicating a modest correlation
between selected image features and house prices. Therefore, only the
seven most relevant image features will be added to the house price
estimation models. The average probability of these image features
within 800 m of houses is computed to mitigate the impact of image
density dispersion. Properties without images around were excluded,
which are primarily distributed at Newham and Greenwich and account
for 12% of the data coverage.

After several stages of data preprocessing, a total of 23 independent
variables, including traditional housing features and scene features, are
finally selected to explore whether images can be considered as an
additional data source and how they influence the housing market. The
overall descriptions and statistics of the three types of features are dis-
played in Table 1.

4. Methodology framework

A method framework (see Fig. 3) is proposed to explore two aspects
of housing price estimation: (1) whether geotagged images are an effi-
cient data source to unpack the impacts of housing prices and (2)
whether machine learning ensemble methods are more promising tools
in terms of performance and interpretation compared with a traditional
HPM. This framework consists of three phases: feature fusion, model-
ling, and evaluation and interpretation.

Models will be trained on two sets of variables through feature
fusion. Traditional variables include 16 basic housing structural and
location features, and enriched variables include all 23 features sum-
marised in Table 1. Three models are employed, including one HPM that
serves as a baseline and two machine learning models: RF and GBM, to
further train on features identified through baseline. The estimations
will then be analysed and evaluated through model performance and
interpretation. Model performance evaluates how well the constructed
models fit the observations, and model interpretation unpacks the re-
lationships between all independent variables and housing prices. The
best model will be recognised based on prediction performance and
interpretation. The remainder of this section summarises each technique
and procedure involved in the framework.

4.1. Baseline hedonic price model

A parametric HPM is first used as a benchmark in our approach. The
HPM assumes a linear functional form described by a group of param-
eters—the coefficients of independent variables (Horowitz & Lee, 2002).
Although nonparametric approaches such as kernel estimates avoid the
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strong linear assumptions underlying the parametric methods, they have
been criticised for their “curse of high dimensionality” and computa-
tional burden. Therefore, a semilogarithmic HPM is selected for its
intuitive interpretation, ease of use and variation consideration (Sir-
mans et al., 2005; Zhang & Dong, 2018). In particular, the property
transaction price is viewed as the dependent variable, and all features
are independent variables. Before fitting the models, the input variables
are standardised to express each variable in the same units (i.e., between
0 and 1) and thus ease interpretation. The mathematical formula of the
semi-log hedonic model is displayed in Equation (1):

LnP = a+ Y pkCk+e 1

Ln P refers to the logarithmic form of the transaction price at the
postcode level, gk is the coefficient of one housing characteristic, where
k represents the number of independent variables C, « is a constant term,
and ¢ is the random error term.

The mechanism of this model is to find the optimal coefficients for all
the variables that minimise the error. The interpretation is relatively
straightforward: the estimated coefficients represent the marginal
change of the dependent variable when a unit increase occurs in one of
the independent variables. However, this approach is highly sensitive to
multicollinearity and outliers and limited to capturing nonlinear re-
lationships and large numbers of variables (Sirmans et al., 2005). As a
result, the variance inflation factor (VIF) is used to check for multi-
collinearity in our model trained with all 23 independent variables. VIF
is a measure of collinearity and correlation among predictor variables
within a multiple regression model. A rule of thumb is that if the VIF is
larger than the threshold of 10, then the variable is considered highly
colinear and correlated with the other variables (Kutner et al., 2004).

4.2. Machine learning methods

Both RF and GBM are ensemble machine learning methods that
combine the predictions of several base estimators on a given algorithm
to gain better robustness than a single estimator (Pedregosa et al., 2011).
RF generates many uncorrelated decision trees based on averaging
random selection of predictor variables from the training set (Breiman,
2001). GBM trains a series of models in a stagewise, additive, and
sequential manner that optimises arbitrary differentiable loss functions
(Friedman, 2001). Unlike RF, where each tree can be trained indepen-
dently, each tree in GBM is determined by previous outputs. These two
methods have been commonly used because they handle more extensive
features, high accuracy performance, and robustness to skewed distri-
butions, multicollinearity, outliers, and missing values (Pal, 2017). On
the other hand, these two models have stated usability in housing price
studies and higher interpretability than other machine learning models,
such as neural networks (Hu et al., 2019; Yao et al., 2018). Their joint
pitfalls are computationally expensive and may overfit particularly
noisy datasets.

A common characteristic in machine learning methods is that they
are parameterised by a range of hyperparameters, which are required to
be tuned and optimised to yield an optimal model that minimises some
predefined loss function (Claesen & Moor, 2015). Manual and grid
searches are the most frequently used hyperparameter optimisation
methods; however, they have difficulties reproducing results and suffer
from too many trials for dimension exploration. (Bergstra & Bengio,
2012). Hence, random search, where each parameter setting is sampled
independently from a specified distribution over the cross-validated
search, is implemented due to its primarily high efficiency and less
computational time. To obtain a reasonably decent set of values of the
hyperparameters, either a distribution over possible and random values
or a list of discrete choices can be specified for each parameter. The
important parameters to adjust for RF are the number of trees, the
minimum number of samples at a leaf node and the number of features
for a split. In the case of GBM, the parameters are the number of boosting
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Fig. 2. The seven most relevant features selected through the feature selection process.

stages, learning rate, the minimum number of samples at a leaf node and
to split the node, the maximum depth to limit the number of nodes
(Pedregosa et al., 2011)°. Fivefold cross-validation, a typical split-train-
test strategy that minimises the estimator error, is used in our random
search. More details of cross-validation are explained in Section 4.3. The
optimised hyperparameters of RF and GBM are shown in the footnote.

4.3. Model performance and interpretability

In any modelling context, validation and performance are crucial to
evaluate how accurate and reliable the constructed models are (Hastie
et al., 2009). A set of visualisation tools are used to validate the pre-
diction and three popular statistical metrics, mean absolute error (MAE),
mean squared error (MSE), and the coefficient of determination (Rz), to
evaluate the model performance. Combining these three metrics implies
the model’s predictive power, and independent variables describe the
variation of the observed variable. MAE and MSE compute the average
absolute and squared error or loss between the predicted and the actual
values, which are always positive and represent better predictions the
smaller their value. R? is an index representing the percentage of the
variance in the output explained by predictors (i.e., independent vari-
ables) in a regression model, which ranges from 0 to 1 and where larger
values represent more explanatory models.

To avoid overfitting and unreliable results, cross-validation (CV) is
performed to evaluate all model performances on our limited data
sample. The basic approach is called k-fold CV, which divides the dataset
into the number of k nonoverlapping partitions (James et al., 2013). For
each k group or fold, a model is trained on k-1 of the folds, and the
remaining part of the data is treated as testing data to measure the
model’s performance. The resulting measure is often summarised with

5 The values for hyper parameters that we use include:RF: n_estimators =
200, min_samples_leaf = 2, max_features= ‘auto’, max_depth = 30;GBM: n_es-
timators = 350, learning_rate= 0.1, min_samples_split= 25, min_samples_leaf=
50, and max_depth = 10.

the average values computed in the k loop. Considering the data size of
this study and the computational cost, a commonly used k = 5 (Arribas-
Bel et al., 2017; James et al., 2013) is configured to calculate cross-
validated MSE and R? then the model with better performance will be
recognised for interpretation.

Since RF and GBM cannot be interpreted by examining regression
coefficients and significance due to their nonparametric nature, per-
mutation importance and accumulated local effects (ALE) plots were
utilised to explore the relationships between variables and the obser-
vations. These two methods can measure the relationship between input
factors and the observations. Permutation importance is calculated in
two steps: first, a baseline metric of the estimator is evaluated on the
training dataset; second, a single feature column from the validation set
is permuted, and the metric is recomputed (Breiman, 2001; Pedregosa
et al., 2011). The importance is the difference between the baseline and
the drop in overall metric by permuting the column. In addition to being
more reliable, permutation importance can also overcome the problem
that many unique values can be misleading compared to the traditional
feature importance method of several ensemble methods. MSE is the
metric used in this study to measure feature importance. ALE plots
visually reflect how features affect the prediction of a machine learning
model on average (Apley & Zhu, 2016). To estimate local effects, the
feature is divided into many intervals defined by the quantiles of the
feature distribution to measure their differences in the predictions. The
ALE value represents the key effect of the feature at a given value
compared to the average forecast centred at zero. Unlike the more
popular partial dependence plots (PDPs), which display the marginal
effect of one or two features on a machine learning prediction model,
ALE plots are faster, unbiased and a more interpretable tool (Molnar,
2019). This is because PDPs can significantly bias the estimated feature
effect if features are correlated, which is the case in our study.
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Table 1
Descriptions and statistics of three types of variables for housing prices.
Categories Variables Descriptions Mean
type_F Dummy variables, 1 if the property 0.785
type is flat
type_S Dummy variables, 1 if the property 0.025
type is semi-detached
Structural type_T Dummy variables, 1 if the property 0.183
features type is terraced
new_Y Dummy variables, 1 if the property is 0.128
newly built
tenure_L Dummy variables, 1 if the tenure is 0.795
Leasehold
bus_num Number of bus or coach stations 0.031
within 800 m distance
sub_num Number of underground stations 0.219
within 800 m distance
lei_num Number of leisure or sports centres 0.157
within 800 m distance
mel_num Number of medical care centres 0.187
within 800 m distance
sch_num Number of primary schools within 2.165
Location 800 m distance
. bus_dis Distance to the nearest bus and coach ~ 2.174
(neighbourhood) .
features station
sub_dis Distance to the nearest underground 1.477
station
lei_dis Distance to the nearest leisure or 0.875
sports centre
med_dis Distance to the nearest medical care 0.918
centre
sch_dis Distance to the nearest primary school 0.240
park_area Coverage of parks and gardens within ~ 0.048
800 m distance
plaza Mean probability of images classified 0.013
as plaza
crosswalk Mean probability of images classified 0.008
as crosswalk
palace Mean probability of images classified 0.002
Scene features as palace
(within 800 m restaurant ~ Mean probability of images classified 0.005
distance of as restaurant
houses) museum Mean probability of images classified 0.006
as museum
ind_area Mean probability of images classified 0.008
as industrial area
church Mean probability of images classified 0.002

as church
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5. Results and discussions
5.1. Model performance

Fig. 4 visualises the actual and predicted logarithmic house prices of
HPM, RF and GBM between traditional and enriched variables of house
price estimation. Fig. 4(a) shows scatter plots of six sets of models, and
Fig. 4(b) displays their density distribution based on kernel density
estimation that uses a continuous probability density curve in more di-
mensions. Overall, the R? of all models improve slightly when scene
features derived from images are considered into the models. The pre-
dicted values are undervalued to some extent compared to the observed
values for all models, particularly for two HPMs that predicted values
obviously deviate from actual values regardless of whether image fea-
tures are added. The larger HPMs gaps in Fig. 4(b) are most likely due to
the influence of multicollinearity of the models, as discussed in Section
4.1. The predictions of machine learning models in blue and orange in
both Fig. 4(a) and (b) appear to fit the observations better than HPM. RF
and GBM approach actual log prices more when scene features are added
to independent variables, indicating that models trained RF and GBM fit
our data well and have better performance than both predictions of
HPMs regardless of whether images are added to the variables.

Next, the cross-validated MAE in the units of logarithmic house
prices, MSE in the square of logarithmic house prices and R? are
calculated to reflect generalisation performance, as shown in Table 2.
The overall performance of the three models improved with slightly
higher R?, lower MSE and MAE when image attributes were considered.
The performance of HPM is inferior to RF and GBM, as shown by larger
MSE, MAE and smaller R?; in contrast, the RF model shows better ac-
curacy and robustness, with the highest R? and smallest MSE and MAE,
where the entire 23 input variables could explain 66.5% of the variance
in the observation. This table illustrates the superiority and flexibility of
the two machine learning models due to their less uncertainty (lower
MSE and MAE) and greater accuracy (higher R?). Although the im-
provements in prediction are not highly significant with additional
perceived scene features, the results also imply that user-generated
images of urban surroundings may be used as a supplementary data
source in house price estimation.

Since RF with all 23 variables performs better than others, we further
create a residual map at hexagonal aggregation, shown in Fig. 5, to
visualise the difference in logarithmic house prices between observa-
tions and estimations to gain intuitive insight into the spatial

—— Perceived Scene Features (7)

v

Enriched Variables

(5+11+7 variables)

.

Gradient Boosting

i '

Feature Importance
Model

Interpretation
ALE plots

Fig. 3. Overall methodological framework.
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enriched variables.

5.2. Model interpretation

Table 2
A d fi i dels and attributes. . . . i1s .
ceuracy and error scores for various moce’s anc attributes Before looking into the interpretability of RF, which has the best
Metrics Housing attributes only Housing attributes + Image attributes performance, it would be good to see how the baseline linear HPM be-
HPM RF GBM HPM RF GBM haves, in other words, the magnitude of all 23 independent variables.
R2 0305 0619 0616 0356 0665 0635 This procedure cou'ld help us f:n'hance the r.ellé.lb’lllty of the 1n‘terpretat10.n
MSE 0.355  0.193  0.189  0.363  0.169  0.185 of RF. The effect sizes (coefficient), the significance of estimated vari-
MAE 0.453 0.315 0.320 0.439 0.293 0.313 ables (p-values) within the 95% confidence interval, and VIF are dis-

played in Table 3. The larger the coefficient values, the more marginal
the changes in the outcome associated with a unit increase in each
determinant. The p-value less than 0.05 represents that the variable is
statistically significant for the model.

Overall, traditional housing features such as the type of house (i.e.,
flat or terraced), the distance to the nearest subway station and whether
the tenure type is leasehold or freehold (type_F, type_ T, sub_dis, ten-
ure L) affect housing prices much more than others and are also statis-
tically significant. Most coefficients and significance remain stable
regardless of whether scene features are considered. Only a minor
reduction of impacts on the location-type variables was obtained by

distribution of the errors. The blue-green and red-orange dots represent
higher and lower estimations than the actual log house prices. The
overall residuals of housing prices in Inner London fluctuate around O (i.
e., yellow dots). At the same time, properties distributed in the western
areas of Inner London (Boroughs of Kensington and Chelsea, West-
minster and Camden) have lower estimations than the actual prices,
implying that the errors located in these areas are difficult to explain by
our regression model. A possible explanation for this error is that the
average house prices of these three boroughs are far higher than those of
the other areas in Inner London, as shown in Fig. 1(a).
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Table 3
Standardised coefficients of the baseline HPM model with different numbers of
variables.

Traditional housing
features (16)

With additional image
features (23)

Features
Coefficient P-value Coefficient P-value VIF

intercept 13.075 0.000 13.075 0.000

type_F —-0.315 0.000 —0.337 0.000 35.420
type_S —0.034 0.000 —0.036 0.000 4.396
type. T -0.174 0.000 —0.184 0.000 21.481
new_Y 0.019 0.000 0.019 0.000 1.059
tenure_L —0.141 0.000 —0.141 0.000 12.596
bus_num —0.001 0.872 —0.003 0.315 1.209
sub_num —0.074 0.000 —0.093 0.000 1.860
lei_num 0.010 0.013 0.011 0.005 1.777
medi_num —0.023 0.000 —0.011 0.003 1.764
sch_num —0.004 0.271 —0.003 0.447 1.653
bus_dis —0.028 0.000 —0.013 0.000 1.317
sub_dis —-0.361 0.000 —0.316 0.000 2.078
lei_dis 0.042 0.000 0.041 0.000 1.899
med_dis —-0.070 0.000 —0.031 0.000 1.930
sch_dis 0.050 0.000 0.049 0.000 1.566
park_area% —-0.018 0.000 -0.016 0.000 1.038
plaza 0.064 0.000 1.217
crosswalk 0.053 0.000 1.147
palace 0.060 0.000 1.209
restaurant 0.054 0.000 1.080
museum 0.038 0.000 1.155
industrial_area —0.005 0.070 1.091
church 0.048 0.000 1.208

introducing scene variables. In addition to the number of subway sta-
tions, the number of other POIs, including schools, health centres, retail
centres and bus stations, has little impact on house prices within a 800 m
distance. In terms of the scene features, plazas, crosswalks, palaces,
restaurants, museums and churches have more influence than most
neighbourhood features identified from POI data and significant
explanatory power in predicting housing prices. Only the industrial

scene has no association with house prices based on the coefficient and
the p-value. Particularly, the flat and terraced type and the shortest
distance to subway stations and health centres have negative relation-
ships with housing prices; the higher the values of these variables are,
the greater the decrease in housing prices. Conversely, most of the scene
variables have positive effects on the estimation, which conforms to
prior knowledge that the more attractive the scenery and robust infra-
structure around a house is, the higher the price of the house.

The calculated VIFs of the property type of flat (35.420), property
type of terraced (21.481) and tenure type of leasehold (12.596) are
greater than 10, indicating that these three housing variables are highly
correlated with each other. Multicollinearity is not a problem for
nonparametric tree-based methods. Hence, we then turn to the inter-
pretation of RF trained on all features. Fig. 6 plots the permutation
importance scores computed, where the nine red bars and three green
bars represent more important traditional and image features to the
prediction that are larger than the median of importance. It is evident
that the distance to the nearest subway stations within a 800 m distance
contributes the most to the predictive power of the model, and the other
four accessibility variables (i.e., the shortest distance to a property) and
the coverage of parks also have important effects on the estimations. The
terraced flat and tenure type of leasehold is far more critical than the
other housing structural features. Relative significant perceived scene
features are palaces, plazas and crosswalks, conforming to common
knowledge that attractiveness and accessibility have clear impacts on
house prices. However, whether the property is new or old and is the
semi-detached type has almost no association with its housing price. In
addition, the number of different POIs and infrastructures within a 800
m distance of the property proves less relevant to the estimation. The
possible reason for the above outcomes is that a tiny fraction of trans-
actions has records for these features during the study period, such as the
valid values for the degree of new or old and the type of semi-detached
property only accounting for 10% and 3% of the data, consequently,
hardly contribute much to the predictive power of the model.

The overall interpretation of the RF model is similar to that of the
benchmark HPM except that the RF model captures more significance in
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service accessibility and the coverage of green parks. The more impor-
tant input variables are convenient transportation, accessibility of
essential social infrastructure, the flat property type, the terrace prop-
erty type, the tenure type and a few perceived scenes on housing prices.
The results show that in addition to the conventional influence features
of housing prices, how people interact with the surrounding environ-
ment of properties also impacts housing markets. Compared with the
neighbourhood features identified through POI data, the image-based
perceived scene features highlight the significance of the attractive-
ness of specific local amenities and places to housing prices. It is the core
merit of considering perceived scene features into housing prices,
helping the restructuring and optimisation of residential areas in future
regional construction, planning and development.

Fig. 7 displays the ALE plots of the most relevant variables from the
structural, location, and perceived scene features: the flat, the shortest
distance to the subway station and perceived palace scenes to explore
the relationships between variables and estimations further. ALE plots of
baseline HPM are also included for comparison. The horizontal and
vertical axes represent the range of variables and accumulated local
effect values, respectively, and the zero value implies the average pre-
diction effect. The overall patterns of ALE plots for both baseline HPM
and RF are consistent. The features property type of flat and the shortest
distance to subway stations have negative relationships with the
observation, while the perceived scene feature of a palace is positively
associated. The differences between the two models are first linear and
nonlinear relations, and second, the average prediction of HPM changed
more than RF with the same increasing values of features. Specifically,
the average prediction decreases with the rising value of the property
type of flat, but it flattens out until 0.5 for the rest; the longer the dis-
tance to the nearest subway station, the lower the prediction power. The
perceived scene feature of a palace has a strong positive effect on the
prediction for HPM while a weak positive impact on the prediction for
RF, which corresponds to the relatively low importance of palace for the
model prediction in Fig. 6.

The results suggest that a shorter distance to subway stations, less
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opportunity to live in flat property types, and more potential to live next
to attractive scenes such as palaces can significantly increase local real
estate prices. The findings could be informative for policymakers to
formulate equitable housing policies and help urban governance based
on the physical environment and the popularity in terms of how people
perceive and interact with a neighbourhood. Additionally, dynamic
housing price changes are significant for local planners, for example, to
develop a healthy housing market through neighbourhood public ser-
vice configuration and distribution and more affordable homes to a
broader population.

6. Conclusions

This paper explores the potential of geotagged social media images
for monitoring housing prices and the superiority and flexibility of using
machine learning methods to understand the impacts of various features
on the housing market. Multiple datasets are employed to extract three
types of elements: structural, location and scene attributes. With these,
two machine learning methods, RF and GBM, are used and compared to
the traditional house price estimation model HPM. The results illustrate
that RF proved to be the best model based on performance, and it is also
as interpretable as HPMs through a series of visualisations. In summary,
the empirical results indicate that scene features extracted from geo-
tagged user-generated images could add minor value to house price
estimation in a sense. Properties surrounded by well-equipped amenities
and natural scenes tend to be considered more attractive and have a
higher value.

The main contributions of this research are twofold. On the one
hand, we uncovered the possible potential of user-generated social
media images in house price estimation. Although the marginal
improvement on the model performance, user-generated images could
be used as a supplementary data source for house price estimation if
human perception is considered. This filled in current research gaps that
neighbourhood features identified from POIs and street view data were
unable to capture how people experienced and interacted with the
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physical environment. By including urban scene features extracted by
various citizens, the impacts of the popularity of scenes on the housing
market are revealed to a certain extent. On the other hand, the meth-
odological framework that integrates baseline HPM with two machine
learning algorithms is insensitive to multicollinearity and proven to
have more accurate performance and equivalent interpretability,
avoiding the usual black-box problems attributed to common machine
learning algorithms. This is also applicable to other traditional
empirical-statistical methods that consider spatial heterogeneity, such
as geographically weighted regression, which has a high dependence on
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prior knowledge and relatively poor capability of addressing multiscale
effects (Hu et al., 2019).

From the perspective of developing a sustainable city, in addition to
traditional datasets, stakeholders may also consider user-generated im-
ages as a supplementary dataset when assessing the housing transaction
market. This data source can capture residents’ interactions with the
urban environment, reflecting their interests and perceptions of urban
scenes. The patterns may be helpful to real estate developers for early-
stage site selection of residential buildings. Living environments with
good amenities, such as convenient transportation, accessibility of green
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space, recreational places, and distinctive scenes, such as plazas, palaces
and crosswalks, are relatively important factors in house price estima-
tions. Furthermore, the government could pay more attention to the
adjustment and design of housing development based on various facil-
ities and surrounding urban features. It could assist in improving the
vitality of the area surrounding a property, which subsequently in-
fluences people’s willingness to buy that property.

Despite the contributions, it should be noted that the limitations of
Flickr data in representation remain unresolved. First, like other user-
generated social media data, the Flickr platform is being used in a
self-selection process (Goodchild, 2007), implying that the number of
users does not represent all age groups or genders. This has been
demonstrated in a recent survey that the dominant age groups for these
platforms are teenagers or middle-aged males (Barnhart, 2021). As a
result, the perception features extracted from Flickr were based mainly
on specific population groups that were not sufficiently representative.
Second, the limitation of spatial heterogeneity and lack of data in a few
neighbourhoods cannot be overlooked. It implies that more photographs
existed of tourist attractions and landmarks as shown in Fig. 1b, sug-
gesting our models are dominantly built on houses with more iconic
scenes surroundings rather than all houses evenly in Inner London. Even
if a series of data processing steps have been taken in Section 3.2, the
underlying data bias of spatial heterogeneity in Flickr is still included.
To minimise this limitation, combining other user-generated imagery
data to extract features, such as Google Photos and Instagram, might be
possible. The data coverage and representation could be possibly
improved by linking diverse datasets through aggregated spatial and
temporal scales.

This research could be extended and improved in a few ways. First,
other image recognition methods, such as image segmentation, can be
used to extract more precise scene features for our housing price esti-
mation model. Second, additional datasets could be used to capture
possible impact factors on real estate prices, such as the data including
more housing structural features such as the size or the number of
bedrooms for a single house, interior visual images (Ahmed & Moustafa,
2016) or street views imagery. Furthermore, more cities could be
included to compare the relationships and differences. For example, do
identical impact factors influence local housing prices and are there any
distinctive scene features for each city? Moreover, the time dimension
could be further considered to unpack the dynamic impacts of housing
prices, helping monitor the changes in the housing market and regu-
lating housing prices over time.
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