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Concerns have been raised in numerous countries over declining rates of active transport
to school. In a UK context, the pupil-school commute is estimated to contribute around
658 kilotonnes of CO2 per year; however, tackling this issue effectively requires an
improved understanding of how emissions can be modelled and mapped over a vari-
ety of scales. This paper implements a new estimation technique for the modelling
of CO2 emissions linked with the school commute that integrates both transport net-
work-level routing and geographically disaggregate vehicle emissions data. The model
is then applied to a national cohort of pupils in England. Areas demonstrating the
highest emissions were typically more rural and/or comprising more affluent resident
populations. Emissions were also shown to increase with school year, with larger step
changes between educational stages reflecting the different geography of school loca-
tions. Furthermore, where secondary school entry policies were selective or based on
a religious domination, average emissions were typically higher than in non-selective
schools.
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Introduction

Internationally, the rates of travelling to school by active transport (e.g. cycling or walking)
are in decline (Tudor-Locke et al. 2001, Schlossberg et al. 2006, McMillan 2007, Trang
et al. 2012), and the corollary switch to less sustainable modes of travel have been linked
to negative effects on the environment in terms of increased emissions (Van Ristell et al.
2012), increasing traffic congestion around schools (Collins and Kearns 2001) and health
impacts related to lower physical activity levels (Faulkner et al. 2009, Meron et al. 2011)
or pollutant exposure (McConnell et al. 2010).

In a UK context, schools account for 15% of total public sector emissions (DCFS
2010), which in England are estimated to be the equivalent of around 9.4 million tonnes
of CO2 per year (SDC 2006). Seven per cent (658 kilotonnes) of this total is associated
with the pupil-school commute, and as such, there are significant environmental benefits
for pupils to adopt more sustainable travel behaviour.

International research on commuting to school reveals that mode choice is impacted
by multiple interacting factors including actual and perceived distance to the school
(McDonald 2007, Müller et al. 2008, Lang et al. 2011), road infrastructure (Ewing et al.
2004, Bejleri et al. 2010), urban form (McMillan 2007, Mitra et al. 2010, Panter et al.
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2010, Cui et al. 2011, Broberg et al. 2013), ethnicity (McDonald 2007), socio-economic
status (Wilson et al. 2010, Roth et al. 2012, Su et al. 2013) and lifestyle factors (Babey
et al. 2009). It has also been argued that policies enabling school choice can lead to longer
commuting distances, which has a corresponding impact on mode choice and emission
levels (Marshall et al. 2010, Wilson et al. 2010, Van Ristell et al. 2012). The use of geo-
graphic information systems (GIS) as a framework for analysis is prevalent in many studies
in this area. Examples include calibrating environmental measures related to active trans-
port (Panter et al. 2010, Dalton et al. 2011, Wong et al. 2011) including accessibility and
walkability (Bejleri et al. 2010, Giles-Corti et al. 2011); estimating probable routes taken
(Stigell and Schantz 2011, Larsen et al. 2012) or energy expended (Cooper et al. 2010);
and finally, assessing pollutant exposure along routes (Ashmore et al. 2000).

The mode of transport adopted by pupils for their commute to school has obvious impli-
cations for CO2 emissions. With a few recent exceptions (Wilson et al. 2007, Marshall
et al. 2010, Van Ristell et al. 2012), there have been limited studies to date that estimate the
emissions impact of these journeys, with only Van Ristell et al. (2012) examining this at
a national scale for England (albeit using a sample). In two of these studies (Marshall
et al. 2010, Van Ristell et al. 2012), different types of regression analysis were used
to predict mode choice given a range of influencing factors (Wilson et al. 2010). From
these models, CO2 emissions are estimated by multiplying the distance and frequency
of trips between locations by the average CO2 attributed to specific modes of transport.
Commuting distance is treated differently by these studies, with Van Ristell et al. (2012)
adopting straight-line distance, whereas Marshall et al. (2010) and Wilson et al. (2007)
implemented network-based distances derived using shortest or actual commuting paths.
The advantage of straight-line distance is that it can be computed quickly; however, this
will typically underestimate the true distance travelled, given that actual routes follow
street/rail/footpath topology. However, the estimation of shortest or quickest path along
a network is computationally intensive, thus creating an additional challenge for studies
concerning either a very large sample or total population survey. A second consideration is
what CO2 (g/km) value should be attributed to different mode choices? The use of national
averages is prevalent in most existing models, however, may overestimate or underestimate
geographical differences in actual emission characteristics; for example, relating to issues
such as the mix of cars typically owned within different types of area.

As such, there is a challenge to create transport-linked CO2 emission estimates that bet-
ter account for geography; both in the estimation of the distances travelled over multiple
transport networks, and where possible, through the integration of mode-choice emission
input parameters that are sensitive to geographical context. This complex task is com-
putationally intensive, however, as illustrated in this paper, can be enabled through the
application of geocomputation (Openshaw and Abrahart 2000). A geographically sensitive
model is specified that integrates network-level (road/rail) routing with geographically
disaggregate vehicle emissions data to provide estimates of pupil school commute linked
CO2 emissions at an individual scale, and for a national cohort of pupils. These results
are compared to those achieved using a simple model that is calibrated with straight-line
distance and national average CO2 estimates. The paper concludes with an exploration of
the socio-spatial structure of the geographically sensitive estimates.

A geographically sensitive model of CO2 emission estimates

An estimate of CO2 emissions attributed to a pupil (p) school commute (kp) is defined
in Equation (1) where d is the distance travelled between origin i (pupil domicile unit
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postcode) and destination j (school unit postcode) utilising transport mode t with associ-
ated CO2 (g/km) value e. Furthermore, in the case of transport by car or light rail, these
average vehicle emissions can also vary by location g. This parameter is used flexibly
within the model, with location being specified as either a lower super output area (LSOA:
400–1200 households) in the case of car travel, or for light rail, the nearest network to the
pupil domicile. The CO2 (g/km) estimates that are used to calibrate the model are dis-
cussed later and detailed in Figure 1 and Table 1. A final weighting parameter w is required
to adjust an estimate where average occupancy is not already accounted for in the emis-
sion value associated with the transport mode choice. In this model, it only includes those
pupils whose travel mode is by car sharing, where a weighting of 0.5 is presumed (i.e. an
occupancy of two).

kp = 2
(
d

(
ip, jp, tp

)
e
(
tp, gp

)
w

(
tp

))
(1)

Average CO2 (g/km)
Under 158.6
158.6–163.3

Over 190.8

0 km 50 km100 km

176.5–190.8
168.8–176.5
163.3–168.8

Figure 1. Average CO2 values, given in g/km, for those cars registered within lower-layer super
output areas.



International Journal of Geographical Information Science 259

Table 1. CO2 emissions for different transport modes (Coley 2002, DEFRA 2011, Tranter 2012).

Transport mode Average CO2 (g/km/passenger) Average occupancy

Taxi 150.3 1.4
Bus (London) 85.7 16.7
Bus (non-London) 184.3 6.3
Coach 30.0 16.2
Light rail – average 71 −

London (DLR) 68.3 93
Birmingham/Midlands 70.5 36
Newcastle 103.0 53
Croydon 44.3 55
Manchester 39.5 59
Nottingham # 36
Sheffield 96.8 40

National rail 53.4 −
London underground 73.1 −
Cycling 8.3 NA
Walking 11.4 NA

Notes: # = No network-specific estimate was available; the model was implemented using the light rail average
as surrogate.
NA, not applicable.

The model is empirically driven, requiring a number input of data sets. The Department
for Education (DfE) supplied a national cohort data set containing individual pupil-level
attributes such as age, gender, ethnicity and home postcode, with a coverage for all pupils
in state-maintained schools in England, from nursery through to post-compulsory educa-
tion.1 These data are collected by the DfE for policy and administrative purposes, and
it is mandatory for schools to complete a return, with three separate surveys completed
throughout the year, and spaced between the spring, summer and autumn terms. Data are
available going back to 2002; however, between 2007 and 2012, there was also an addi-
tional requirement for schools to submit details of ‘usual’ transport mode choices adopted
by pupils for their journeys to and from school. This represents the best estimate of actual
mode choice, however, it should be noted that students may adopt different modes of travel
at the start and end of the day (Schlossberg et al. 2006, Southward et al. 2012); however,
in a UK context, travel mode to and from school has been shown to correlate strongly (van
Sluijs et al. 2009). The DfE supplied access to the Spring 2011 data, which at the time of
request was the latest available release. The total number of records in this pupil database
was 7,532,205; however, from these, 158,700 were excluded as they either did not have a
domicile postcode, or the postcode provided was invalid; mode choice was null, specified
as a ‘border’ (attending a boarding school) or ‘other’ (an uncategorised mode choice), thus
leaving a final data set of 7,373,505 observations.

The second key data set integrated into the model contains the average of CO2 (g/km)
emitted by those cars that were registered to addresses within each LSOA. Averages were
created for this project by the Department for Transport (DfT) as an aggregation of Driver
Vehicle Licensing Agency (DVLA) data. This records an associated CO2 (g/km) emis-
sion value for those vehicles that are registered to specific addresses. These emission
values are derived using a rolling road test as set out in the European legislation direc-
tive 91/441/EC and are a component of emissions approval. However, when these values
are aggregated at an area level, they may underestimate true emissions averages, given that
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the cars registered after March 2001 are only included in these tests. For example, the aver-
age vehicle CO2 (g/km) from the DVLA data is 162.9, which differs from the Department
for Environment, Food and Rural Affairs (DEFRA) national estimate of 183.2 (DEFRA
2011). However, without actual data on those cars driven to school, these estimates repre-
sent a plausible alternative. If the LSOA-level average car emission rates are mapped (see
Figure 1), there are clear geographic variations; for example, highlighting how cars regis-
tered in the areas surrounding London and the south of Manchester have on average higher
emission rates. Exploring the underlying causes of these variations lies outside the scope
of this paper; however, this map does illustrate the importance of including geographically
contextualised inputs into models when estimating emission levels at a disaggregate spatial
scale.

The model also requires average vehicle CO2 per kilometre emission estimates for non-
car transport. These are given in Table 1 and are sourced from a number of publications
(Coley 2002, DEFRA 2011, Tranter 2012). In general, these estimates are calculated as
an interaction between the average emission characteristics of a type of vehicle and the
typical occupancy, which is why for a single mode (e.g. light rail) there are multiple values
for those schemes operating in different parts of England. The rates for vehicles were all
derived from DEFRA (2011) and are the official (and annually updated) figures used in
government statistics concerning emissions.

An innovative feature of the model is to estimate the distances pupils travel to school
along both the street and rail networks. There are numerous ways in which these network
distances could be estimated, ranging from online services to various open-source or com-
mercial software. All implementations involved the automated supply of origin destination
locations and the calculation of distances over either the quickest or shortest path along
the transport network. For automotive journeys, a wide variety of solutions are available
to calculate routes along the road network, and those tested included the application pro-
gramming interfaces (API) for Google Maps2 and Bing Maps,3 alongside the open-source
routing library Routino4 that utilises OpenStreetMap5 data. The API for both Google Maps
and Bing Maps enabled a query to be sent to their respective online servers, a route calcu-
lated and returned in a standardised format. Routino is an open-source software that can be
compiled for both Linux (http://www.linux.org) or OS X (http://www.apple.com/uk/osx/)
and installed locally. A query can be sent to the library using the terminal, and will return
a result that calculates a route over OpenStreetMap street network data. Other options con-
sidered, but not tested, included various online routing services that also integrated with
OpenStreetMap data such as OpenRouteService6 or YOURS.7 Given the non-commercial
nature of these services, the impact on their servers and bandwidth of calculating such
large volumes of routes would have been significant; and as such, these services were
not tested. Both the Google and Bing APIs were subject to search limits. For Bing, this
was 125,000 sessions or 500,000 transactions within a 12-month period (developers), and
for Google, 2500 per 24-hour period. However, in addition to these limits, both services
appeared subject to adaptive firewall technology, thus preventing multiple queries in suc-
cession. The calls made were within the bounds of the daily usage limits, however, at
various random intervals, would fail to return a result. The reasons for these failures were
not clear, and indeed results could be returned if the failed origin destination queries were
re-run at a later stage. A further limitation to the Google service was a requirement in
their terms of use that any results derived from routing queries have to be displayed on a
Google map after the trip calculation. Thus, although the distance could be extracted, it
was also a necessity to display the returned route on a map, which has large performance
implications, considerably slowing down batch calculations given the rendering time of

http://www.linux.org
http://www.apple.com/uk/osx/
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maps would comprise an unnecessary processing overhead. Overall, both Google and Bing
services provided a reasonable solution for calculating routes, however, daily query lim-
its, in addition to adaptive firewall issues limited their utility when calculating routes in
large volumes. Furthermore, from a methodological perspective, these services are closed
source, and there is little information on those algorithms utilised or metadata about the
network over which the routes are calculated. An alternate solution evaluated was the open-
source Routino libraries that can run under Linux or OS X. The Routino libraries (version
2.2) were complied from source under OS X Lion (http://www.apple.com/uk/osx/), and an
extract of the Great Britain OpenStreetMap data was imported. The default configuration
of the Routino library was implemented with the exception of enabling pedestrian access
to ‘trunk roads’ (larger, often dual carriageways). This corrected problems where pedes-
trian access had not always been explicitly labelled in the underlying OpenStreetMap data,
and because of this, the routing algorithm would occasionally calculate implausible and
very long routes to avoid the ‘trunk roads’. Solutions were compared by examining a set
of 500 randomly selected origin–destination pairs from the pupil database. There was a
strong positive linear relationship between the distance estimates with Pearson correlation
coefficients ranging between 0.98 and 0.99 (P < 0.001). As such, the routing solutions
are reasonably interchangeable; however, Routino was implemented in the model as this
offered the lowest computational processing time given that the calculations were com-
pleted locally, and furthermore, unlike the two online systems is open source, thus enabling
greater transparency of the results.

For non-road journeys (rail, underground, light rail), appropriate online routing applica-
tions were not available, as although it is currently possible for services to supply quickest
travel times, actual track distances are not provided. In the case of the Google Maps API,
some railway routes have started to be added (at least visually); however, these are not uni-
formly available. As such, a custom solution was developed by importing rail network data
into a PostgreSQL8 database with the PostGIS9 (spatial enabling) and pgRouting10 (rout-
ing enabling) extensions. Railway network and station location data were extracted from
national mapping agency open data (Ordnance Survey: Meridian 211); and for light rail and
the London Tube, these were exported from OpenStreetMap. The topologies of these data
were extensively checked to ensure that routes could be correctly calculated after they were
imported into the database. For pupils travelling on non-road transport, a nearest neighbour
calculation was used to return the closest station to both the pupil domicile, and addition-
ally the school attended, with routes being calculated between these two station locations.
Rail has reasonably universal coverage; however, for both tube and light rail, these modes
of transport are only found within certain areas. As such, an error check was required to
examine the plausibility of the assignment of both pupils and schools to a nearest station
(see Equation (2)). For each distance (D) between a pupil (p) domicile and their nearest
(x) station, a Tukey outlier filter (Tukey 1977) was calculated using the quartile (Q) and
inter-quartile range (IQR) specific to each network (n).

[
(Q1n − 1.5IQRn) < Dxp < (Q3n + 1.5IQRn)

]
(2)

An outlier check is necessary given that a light rail, tube or rail mode choice could have
been specified in error, which would result in pupils being assigned to a station at an unreal-
istic distance from their domicile. The same calculation was implemented for schools, thus
supplementing p in the above equation with s for school. Those distance scores returned as
outliers were removed from the analysis, as were those pupil journeys that returned a valid
result but were equidistant between two networks. For these cases, there was no way of

http://www.apple.com/uk/osx/
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determining which network was used, and was an issue specific to London, where two light
rail networks are present within reasonably close proximity, however, are not physically
connected. These procedures were not implemented for the railway network given that sta-
tion coverage is national, and as such, based on a nearest neighbour assignment, it would
be difficult to pick out those matches that were in error. However, the distances calcu-
lated from erroneous origin destination pairs would be detectable as outliers (i.e. travelling
implausible distances), which is discussed later in the context of all transport mode choices.
Out of 16,048 light rail and tube journeys, 1621 were identified as outliers (∼10%). Finally,
a further error check compared the distance to the nearest station with the distance to the
school attended. If the straight-line distance to the school was shorter than the distance to
the station, then the mode was presumed to be in error, and as such, these pupils were also
excluded from the analysis. For all non-road journeys, this removed another 1914 records.

When implementing distance calculations, either the shortest or quickest journeys were
estimated. For road network calculations, these were implemented as the quickest routes,
with access and speed restrictions appropriate to the mode of transport. For example, a
car would not be able to access pedestrian footpaths running through a park. Although
bus routes are beginning to become available for some operators in England, coverage is
currently limited. Furthermore, dedicated school bus routes are not known. As such, these
distances were also calculated as road optimised quickest paths. For rail-based calculations,
the shortest path was calculated, optimising routes based on the track length.

After the model input data were assembled into a PostgreSQL database and routing
solutions were created for both rail and road journeys, these were coupled using the statis-
tical programming language R (http://www.r-project.org). A pseudo-code implementation
of the model is detailed below:

(1) For each pupil, identify the mode choice
(a) Implement a rail- or road-based distance calculation appropriate to the mode
(b) Store the distance travelled

(2) Check that the pupil distances returned are plausible, and extract outliers or
detected errors

(3) For each valid pupil commute
(a) Retrieve an appropriate geographically sensitive CO2 (g/km) emissions esti-

mate depending on location and mode choice
(b) Calculate CO2 (g/km) for each pupil trip
(c) If necessary, weight CO2 (g/km) to account for a car share arrangement
(d) Store emissions estimate

At stage 1(a) in the above pseudo-code, distances are returned using either road or rail
network distances. All rail routes were returned, however, the Routino-based road network
calculations could not return a distance for 24,319 routes despite having valid co-ordinates
specified for both origins and destinations. These errors occur because the algorithm could
not find a proximal node within the OpenStreetMap network data and can occur where the
network coverage is lacking.

After calculating appropriate network distances, an error test was implemented to
check the plausibility of the results. There are a number of reasons why errors may occur,
including

• that the domicile postcode is valid but specified in error
• that the school postcode may be an error (although unlikely given the administrative

importance of these data being correct)

http://www.r-project.org
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• that there has been a geocoding error
• that the routing calculation had returned an implausible result (possible for road

calculations that are dependent on underlying OpenStreetMap (OSM) data quality)

A modified Tukey outlier filter (Tukey 1977) was again implemented to examine each pupil
commute (Kp) against the quartile (Q) and inter-quartile range (IQR) for all distances dis-
aggregated by the combination of year group (a), local authority (g) and mode type (m).
This was necessary to account for geographic differences in transport infrastructure, dif-
ferences in those distances typically travelled using different types of transport, and finally,
to control for how travel behaviour changes between age groups. This was implemented
using Equation (3):

[(
Q1mgq − 1.5IQRmga

)
< Kp <

(
Q3mga + 1.5IQRmga

)]
(3)

This analysis resulted in a final database of 6,912,226 records being returned for input
into the CO2 estimation model. The distances were then multiplied by an appropriate
CO2, given in g/km, for the allocated mode choice, and if necessary, weighted, as described
earlier in this section, and then stored back in the database.

The validity of the model can be explored through comparison with official national
estimates, which as described at the start of this paper are 658,000 tonnes of CO2 per year
for the UK. If the emission value for each pupil is multiplied by 5 (days of the week)
and then by 38 (weeks of schooling), these scores give a summed value for England of
618,602 tonnes CO2 per year. These are reasonably in line with UK statistics, given that
they exclude Northern Ireland, Wales and Scotland; and although there are no methodolog-
ical details of how the official UK estimates were calculated, these would most probably
utilise Euclidian distances, which as discussed earlier, would systematically underestimate
the real distances travelled. It should also be noted that the estimates calculated in this paper
exclude those pupils in non-state schools and those records identified as outliers. Further
validation of the model was implemented by comparing the results of the geographically
sensitive model with an alternate simple model that supplemented transport network dis-
tance with straight-line distance, and swapped the location specific vehicle CO2 emission
values (previously given in Figure 1 and Table 1) for national averages (DEFRA 2011).
A map illustrating the differences between the CO2 emissions estimated by the geograph-
ically sensitive and the simple models are shown in Figure 2. The choropleth units relate
to local authority boundaries, which are an administrative geography for England. Positive
scores within these zones indicate that the simple model is overestimating emissions rel-
ative to the geographically sensitive model, with negative results illustrating the inverse
pattern. The top ten local authorities with the highest overestimated and underestimated
values shown in Table 2. These patterns demonstrate a degree of systematic error, with
the simple model more prevalently exhibiting underestimated values for urban areas and
the opposite pattern observed for rural local authorities. The implication of these differ-
ences reinforces a recommendation for models to better integrate local geography, and is
arguably acutely important if the results are to be presented at sub-national scales.

The geography of CO2 emissions linked to the school commute

The model presented in the previous section created an estimated CO2 emission value for
each valid pupil-school commute. In this following section, these estimates are explored
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Figure 2. A comparison between the simple and geographically enhanced CO2 emissions model.

Table 2. The top 10 overestimation and underestimation of CO2 values between the geographically
sensitive and simple model by local authority.

Underestimate Overestimation

Local authority CO2 (kg) Local Authority CO2 (kg)

Birmingham −9935 South Cambridgeshire 5101
Liverpool −6841 Wiltshire 5271
Manchester −3706 Mid Suffolk 5533
Plymouth −3300 East Lindsey 5609
Sunderland −2967 Aylesbury Vale 8330
Brighton and Hove −2731 Northumberland 8897
Sheffield −2693 County Durham 9287
Nottingham −2412 Shropshire 9496
Medway −2395 East Riding 10, 902
Maidstone −2323 Cornwall 14, 225
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by various factors including school characteristics and year groupings, pupil locations,
and a geodemographic classification that provides a summary of multiple characteristics
about the areas in which the pupils are domiciled. These descriptive analyses illustrate key
characteristics of the English national geography of CO2 emissions linked to the school
commute.

The national geography of CO2 emissions was explored by calculating the pupil aver-
age daily CO2 emission values within local authority administrative areas (see Figure 3).

The local authorities with the highest values attributed to the school commute were
Sevenoaks with estimated average daily emissions of 1184 g of CO2; Canterbury 1115 g;
Tonbridge and Malling 1110 g, East Lindsey 1086 g and South Holland 969 g. Unpicking
this geography is complex given the national coverage, however, in general, those areas
with higher average emissions appeared to be in lower density and more rural areas.
This geography can be explored further by profiling the model results by a geodemo-
graphic classification linked to each pupil postcode. The importance of contextual effects

CO2 (g)
Under 387

Over 878

387–517
517–659
659–878

0 km 50 km 100 km

Figure 3. Aggregated average daily emissions associated with the school commute.
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on children’s school travel mode choice has been explored elsewhere (Sidharthan et al.
2011). Although some have criticised their use (Goss 2003), there is a diverse and interna-
tional legacy of successful application of geodemographics in the exploration of urban
socio-spatial structure; with utility demonstrated across a wide variety of public sec-
tor domains (Singleton and Spielman 2013). The ACORN geodemographic classification
from CACI Ltd (http://www.caci.co.uk/) was made available for this analysis and com-
prised three hierarchically nested levels of 5 categories, 17 groups and 56 types. Each
of the clusters within the typology is named and described to give end-users an impres-
sion of those salient characterisers of the classified areas. The average daily CO2 (g)
associated with the pupil-school commutes are presented by the ACORN typology in
Table 3.

Table 3. Average CO2 (g) emitted during the pupil-school commute disaggregated by the ACORN
geodemographic typology.

Average
Categories Groups Types CO2 (g)

Wealthy achievers (A) Wealthy
executives

(1) Wealthy mature professionals, large houses 734.7
(2) Wealthy working families with mortgages 608.4
(3) Villages with wealthy commuters 844.2
(4) Well-off managers, larger houses 743.5

(B) Affluent greys (5) Older affluent professionals 732.5
(6) Farming communities 1231.4
(7) Old people, detached homes 672.2
(8) Mature couples, smaller detached homes 668.8

(C) Flourishing
families

(9) Older families, prosperous suburbs 497
(10) Well-off working families with mortgages 579.2
(11) Well-off managers, detached houses 655
(12) Large families and houses in rural areas 791.3

Urban prosperity (D) Prosperous
professionals

(13) Well-off professionals, larger houses and
converted flats

315.8

(14) Older professionals in suburban houses
and apartments

454.4

(E) Educated
urbanites

(15) Affluent urban professionals, flats 302.1
(16) Prosperous young professionals, flats 303.4
(17) Young educated workers, flats 422.1
(18) Multi-ethnic young, converted flats 315.5
(19) Suburban privately renting professionals 444.1

(F) Aspiring
singles

(20) Student flats and cosmopolitan sharers 381.1
(21) Singles and sharers, multi-ethnic areas 364.2
(22) Low income singles, small rented flats 420.6
(23) Student terraces 481.2

Comfortably off (G) Starting out (24) Young couples, flats and terraces 488.3
(25) White-collar singles/sharers, terraces 450.7

(H) Secure
families

(26) Younger white-collar couples with
mortgages

551

(27) Middle income, home owning areas 610.5
(28) Working families with mortgages 457.5
(29) Mature families in suburban semis 444.6
(30) Established home owning workers 423.5
(31) Home owning Asian family areas 454.2

(I) Settled suburbia (32) Retired home owners 573.3
(33) Middle income, older couples 467.8
(34) Lower incomes, older people, semis 492.2

(Continued)

http://www.caci.co.uk/
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Table 3. (Continued).

Average
Categories Groups Types CO2 (g)

(J) Prudent
pensioners

(35) Elderly singles, purpose built flats 496.7
(36) Older people, flats 472.3

Moderate means (K) Asian
communities

(37) Crowded Asian terraces 310.9
(38) Low income Asian families 322.2

(L) Post-industrial
families

(39) Skilled older families, terraces 402.1
(40) Young working families 386.6

(M) Blue-collar
roots

(41) Skilled workers, semis and terraces 419.7
(42) Home-owning families, terraces 339.3
(43) Older people, rented terraces 364.1

Hard-pressed (N) Struggling
families

(44) Low-income larger families, semis 396.6
(45) Low income, older people, smaller semis 382.2
(46) Low income, routine jobs, terraces and
flats

382.3

(47) Low-income families, terraced estates 353.4
(48) Families and single parents, semis and
terraces

329.5

(49) Large families and single parents, many
children

353.2

(O) Burdened
singles

(50) Single elderly people, council flats 372.5
(51) Single parents and pensioners, council
terraces

358.5

(52) Families and single parents, council flats 345
(P) High-rise
hardship

(53) Old people, many high-rise flats 380.4
(54) Singles and single parents, high-rise
estates

349.9

(Q) Inner city
adversity

(55) Multi-ethnic purpose built estates 283.5
(56) Multi-ethnic crowded flats 279.1

A number of interesting patterns are highlighted. Firstly, reinforcing those previous
observations from Figure 4, some of those geodemographic types with the highest emis-
sion values are typically found within more rural areas, for example, ‘Villages with
wealthy commuters’, ‘Farming communities’ and ‘Large families and houses in rural
areas’. Secondly, the most affluent types typically have higher emission values (e.g. those
within the category ‘Wealthy achievers’). The inverse of these patterns emerges in those
types that pertain to areas where residential populations have more constrained finances
and are typically found within urban areas (e.g. within the categories ‘Moderate means’
and ‘Hard-pressed’). Drivers of these patterns will likely relate to both the characteristics
of the built environment in the places where the geo-demographic clusters are typically
found, and also the behavioural choices of their typical resident populations. For example,
affluent populations may more prevalently choose to drive over other forms of transport; or,
those cars purchased by people living within more rural areas may bias vehicles with larger
engines that are more suitable to variable terrain. Exploring the underlying motivations for
such choices lies outside the scope of this study; however, to illustrate the influence that
location and transport mode choice has on CO2 emissions between geodemographic types,
a scatter plot of commuting distance and the percentage of pupils adopting active transport
is shown in Figure 4.
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Figure 4. The geodemographics of CO2 emissions, commuting distance and active transport.

The points plotted in Figure 4 are ACORN types, coloured by their nested category and
are scaled by the average CO2 (g) emitted, with smaller points equating to lower emissions.
As might be expected, there is a strong negative linear relationship between the distance
travelled to school and the adoption of active transport, with pupils resident in areas clas-
sified by those types travelling further, typically contributing more CO2 on average per
commute. The disaggregation of this distribution by geo-demographic categories is quite
striking, illustrating again that those types containing more affluent populations are on
average contributing higher levels of CO2 emissions per daily commute, travelling further,
and with lower rates of active transport.

Preferences for active transport will not be homogenous across school years given the
variable geographic distribution of schools at various educational stages, and addition-
ally, growing independence of pupils over time. Figure 5a presents a disaggregation by
school year for the average CO2 (g) emitted during the school commute. The coloured
bars represent different educational stages from nursery (years N1, N2; aged 4–5), through
reception (year R; aged 5), and then into primary school (years 1–6/7; aged 6–11/12),
secondary school (years 6/7–11; aged 11/12–16) and finally, post-compulsory education
(years 12–13; aged 16–18). Average impact grows as school year progresses with step
changes occurring as pupils transfer from nursery school to primary school, primary school
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Figure 5. (a) Average CO2 emissions by school year (b) percentage of pupils travelling using active
transport by school year.

to secondary school, and finally, into post-compulsory education. The step changes relate
to the different distribution of schools and/or travel options; for example, primary schools
are typically smaller than secondary schools and have a more defuse geographic coverage.
The gradual increase in emissions between years is also interesting; more so given that
this pattern follows for primary, secondary, and post-compulsory education. The distances
travelled to school demonstrated the same gradual increase, which is perhaps not that unex-
pected given their use in the estimation of the CO2 emitted; however, these are also matched
by an overall gradual decline in active transport (see Figure 5b). One issue with these obser-
vations is that the patterns observed are not those of a single cohort of students over the
duration of their education, rather those pupils within schools during a single academic
year; and as such, it is problematic inferring too strongly about the changing behaviour of
individuals over time.

The availability and preferences for different types of school will also have an interact-
ing effect on overall emission rates; and as such, the final attribute explored in this paper
considers secondary school admissions criteria. Only secondary schools are considered in
this section given that there are a greater diversity of admissions criteria, and that these will
typically have greater impact on distances pupils travel to school given their more defuse
geographic coverage. Within England, there are a number of different systems that gov-
ern admissions to secondary schools. These differ regionally, and broadly can be divided
into selective (admissions based on a test) and comprehensive (admissions without a test).
In those areas with only selective admissions, a further category exists (‘Modern’) which
is applied to those schools where pupils would attend if they failed to attain a place at a
selective school. Furthermore, some schools also have a requirement (variably enforced)
that pupils should be from a specific religious denomination; providing a secondary and
sometimes overlapping constraint on choice.

Parents choose which secondary school to send their children; however, the allocation
of pupils into schools is bound by the availability of places. Higher performing schools will
typically have increased demand, often leading to over subscription, where more appli-
cations are received than available places. Although various criteria are used to allocate
pupils to available places in non-selective schools, a commonly used differentiating factor
is straight-line distance between a pupil domicile and the school (Singleton et al. 2011).
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Table 4. Emission characteristics disaggregated by secondary school selection criteria and presence
or absence of religious denomination.

Type of school Average CO2 (g/km) Average distance (km) Active transport (% )

No denomination 642.3 3.8 49.3
Religious denomination 871.9 4.8 30.5
Comprehensive 629.0 3.8 47.6
Modern 826.5 4.5 45.0
Selective 1529.6 7.7 19.5

As such, those pupils who are more proximal to the school, on average, will share a greater
chance of admission, all other criteria being equal. For selective schools, these distance
criteria will not typically be applicable, and where the performance of the school is high,
this may attract pupils from more disparate locations. For non-selective schools, religious
denomination can often usurp distance-based entrance criteria, and again, has the effect
of increasing the average distances that pupils will travel to these schools. The impact of
school policy on commuting-linked emissions and the distances pupils travel to school are
summarised in Table 4. This shows that pupils attending religious schools are on average
travelling further to school, with lower rates of active transport and higher average CO2 in
g/km travelled. A similar, but more extreme pattern is exhibited for those attending selec-
tive schools, and additionally, again, with a very low rate of active transport. These data
illustrate that school admission criteria impact strongly on emissions and support previous
work in this area (Van Ristell et al. 2012) that argue for more sustainable ‘neighbourhood
schools’, where pupils are assigned to a nearest (or zoned) school, thus minimising travel
and increasing the prevalence for active transport.

Conclusions

This paper has explored the geography of CO2 emissions linked with the pupil-school com-
mute in England. A method of estimation is presented that accounts for local geography
through the inclusion of transport network distances and vehicle emission characteristics
that are geographically disaggregate. This inclusion represents an incremental improve-
ment on established methods that typically utilise straight-line distances and national
average vehicle emission values. A second innovative feature of the model is that the cal-
culations have been scaled for a near-total population of school pupils, thus creating CO2

emission estimates for around 7 million individual commutes over the transport network.
Previous work in this area has relied on samples (Van Ristell et al. 2012) or small focused
case studies (Wilson et al. 2007, Marshall et al. 2010), and as such, this work represents the
first time a model of such disaggregate scale and extensive coverage has been implemented
in the context of pupil-school commuting. When comparing results to alternate estimates
generated using straight-line distance and national average vehicle emission values, it was
found that these simplified models had a tendency to underestimate emissions relative to
a geographically sensitive model for a number of more urban local authorities. This likely
relates to a composite of factors, however, an obvious impact would be the added complex-
ity of the urban street network (density and directionality of traffic), which would impact
road travel distances.

The results of the geographically sensitive model were mapped and then profiled by
a series of categorical descriptors to elicit the types of areas in which the pupils were
domiciled, alongside the characteristics of those schools attended. This analysis supported
findings from the wider literature that has illustrated links between socio-economic status,
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the built environment and travel demand/mode choice (Ewing and Cervero 2001, Handy
et al. 2005, Brownstone and Golob 2009). Higher average emissions per pupil were more
prevalently found in lower density areas and/or with more affluent populations. The impor-
tance of geographic context has been shown elsewhere to influence pupil mode choices
(Sidharthan et al. 2011), and as such, there may also be a degree of self-reinforcement
within or between proximal zones that have populations predisposed to adopting less
sustainable methods of commuting to school. From a policy perspective, this may make
‘neighbourhood’ an appropriate scale at which to encourage more sustainable behaviour.

Average emissions increased with each year of academic progression, with larger step
changes occurring between the different educational stages (e.g. primary to secondary).
The type of school that parents choose for their children was also shown to have an impact
on emissions. Pupils attending schools where entrance was governed by selective admis-
sion policies (based on a test) tended to exhibit a higher propensity for travelling longer
distances, with a correspondingly lower rate of active transport and increased average
emissions. Similar patterns were also observed for those pupils attending schools where
religious denomination formed a component of the entrance criteria. It is argued that this
relates to an absence of entrance criteria linked to proximity measures, which is a com-
mon metric used in non-selective schools where demand outstrips supply. From a policy
perspective, this supports those arguments made elsewhere in the literature (Van Ristell
et al. 2012) that significant potential benefits for reducing CO2 emissions could be attained
through policy that encourages schools with localised catchments.

The model presented in this paper has illustrated a method of improving geographi-
cal sensitivity in transport-linked emissions models; however, it has also highlighted some
areas for extension. For example, actual bus routes could be integrated when national cov-
erage of these data becomes available. This would also enable multi-mode routing to be
considered, which may be especially important in areas such as London where a more
integrated public transport infrastructure exists. Further model refinements could also be
envisaged to better account for the physical characteristics of road routes, for example, by
measuring terrain, assessing the probable number of stops at lights and accounting for other
network characteristics such as speed limits. These data could be used to weight CO2 esti-
mates, as they would have an impact on car emissions. In addition to these methodological
enhancements, a number of substantive directions for future research emerged from the
empirical analysis. Firstly, to explore how emission patterns changed between 2007 and
2012, corresponding to when the national mode choice data were collected; and secondly,
to explore how emissions and mode choices change between educational stages through
the linking of individual pupil records over time.

This paper has described and then implemented an alternate way in which CO2 emis-
sions linked with the pupil-school commute can be estimated for a national cohort of
pupils; building on previous work by encapsulating the topological structure of the trans-
port network and geographic differences between average vehicle emission characteristics.
The substantive findings are supportive of previous studies in this area, indicating that
built structure, affluence and school admission policies all have impact on overall CO2

emissions.
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Notes
1. DfE school census data: http://www.education.gov.uk/rsgateway/schoolcensus.shtml
2. https://developers.google.com/maps/
3. http://www.microsoft.com/maps/developers/web.aspx
4. http://www.routino.org
5. http://www.openstreetmap.org
6. http://openrouteservice.org/
7. http://www.yournavigation.org/
8. http://www.postgresql.org/
9. http://postgis.net/

10. http://pgrouting.org/
11. http://www.ordnancesurvey.co.uk/oswebsite/products/meridian2/
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