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A Modified DBSCAN Clustering Method
to Estimate Retail Center Extent
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This research introduces a new method for the identification of local retail agglomera-
tions within Great Britain, implementing a modification of the established density based
spatial clustering of applications with noise (DBSCAN) method that improves local sensi-
tivity to variable point densities. The variability of retail unit density can be related to
both the type and function of retail centers, but also to characteristics such as size and
extent of urban areas, population distribution, or property values. The suggested method
implements a sparse graph representation of the retail unit locations based on a distance-
constrained k-nearest neighbor adjacency list that is subsequently decomposed using the
Depth First Search algorithm. DBSCAN is iteratively applied to each subgraph to extract
the clusters with point density closer to an overall density for each study area. This inno-
vative approach has the advantage of adjusting the radius parameter of DBSCAN at the
local scale, thus improving the clustering output. A comparison of the estimated retail
clusters against a sample of existing boundaries of retail areas shows that the suggested
methodology provides a simple yet accurate and flexible way to automate the process of
identifying retail clusters of varying shapes and densities across large areas; and by
extension, enables their automated update over time.

Introduction

Town centers form the core of many urban areas and are characterized by clustering of various
types of socio-economic activities with retail and related services being pivotal. They can be
viewed as complex economic systems that constantly evolve (Thurstain-Goodwin and Unwin
2000) and therefore their composition and spatial extent are likely to expand or contract over
time. This evolution has been linked to changes in the planning system, rising property values,
changing levels of accessibility, other forces of change such as economic shocks or more grad-
ual changes such as the rise of Internet sales (Singleton et al. 2016).

It has long been recognized within multiple international settings, that the aggregate
national structure of consumer spaces and shopping destinations are complex (Berry 1967);
with retail cluster size and function relating to their attraction, market potential, competition,
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and agglomeration benefits. Within many contexts traditional shopping destinations that have
evolved naturally and appear well-embedded within the urban fabric (including town centers),
are supplemented by purpose-created retail opportunities such as regional shopping centers,
retail parks, strip malls, or focused shopping destinations such as designer outlets (Teller and
Reutterer 2008). Although it has been argued that depicting retail agglomerations for a national
extent, and particularly accounting for more granular temporal shopping patterns is very chal-
lenging (Mackaness and Chaudhry 2011); the classification of shopping destinations and delin-
eation of their spatial extent is essential to gaining a better understanding of the relationship
between use of retail space and changing consumer behavior. A consistent and rigorous
approach to defining town center boundaries enables systematic metrics of retail center mor-
phology and performance to be actualized (Thurstain-Goodwin and Unwin 2000), alongside
providing utility as input into many commonly implemented retail analytics tasks related to
store location and demand estimation (Newing, Clarke, and Clarke 2015).

In the case of England and Wales, a national set of town center boundaries were developed
by Thurstain-Goodwin and Unwin (2000) and subsequently adopted by the Department of
Communities and Local Government (DCLG) in 2004. Their approach was to generate surfa-
ces of spatial densities using kernel density estimation (KDE), from socio-economic variables
including building density, diversity of building use, and tourist attraction (Mackaness and
Chaudhry 2011). In addition, their approach aimed at delineating town centers, however, such
zones are more expansive (e.g., by including office space) than those that might be related
mainly to retail. As such, one of the objectives of this work is to move away from a more gen-
eral definition of town center locations as centers for employment, to a more functional mea-
sure of spaces delineated for retail and services. Furthermore, in many cases, the extent of the
2004 DCLG town center boundaries will likely have changed over the past decade, eroding the
utility of these previous models for contemporary applications. Finally, the availability of more
accurate and comprehensive spatial data on retail unit locations in Great Britain (G.B.) has
improved significantly since this time, which provides scope for exploring a new robust method
of defining the spatial extent of retail agglomerations. As such, this article highlights deficien-
cies in a number of existing cluster analysis methods for retail center definition before present-
ing a density-based clustering technique that can consistently identify retail areas, is updatable
over time and can be applied to wider national extents. We implement this analysis using a
national data set of retail and service locations, and evaluate the center definition outcomes at a
local level.

Where are retailers located?

A national occupancy data set of 529,062 retail locations across G.B. was provided by the
Local Data Company through the ESRC Consumer Data Research Centre and was collected
via a large pool of local surveying teams during 2015. The data contain detailed information
about the current occupier and location of retail unit and service premises. While a full post-
code was available for all surveyed premises (enabling geocoding proximal to ~13 properties),
more precise latitude and longitude coordinates were available for 437,260 units (about 82%),
which were retained for further analysis; thus providing building level of accuracy. Other col-
lected information for each location included the fascia (a surrogate for occupier) and the type
of retail or service business (i.e., leisure, comparison, service, and convenience) including
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vacant outlets. For retail units located in shopping centers, retail, and leisure parks the respec-
tive name of the shopping center or retail park was also provided.

Conceptually, utilizing vacant units in the identification of local retail agglomerations may
be problematic given that these voids may often occur as a result of failure of a particular retail
setting (Benjamin, Jud, and Winkler 2000), and as such, an indication of potential change in
extent morphology. For this reason, all vacant units were removed from the data set. Additional
processing also removed units that were classified as auto services that are not typically consid-
ered part of retail agglomerations. Furthermore, miscellaneous (not related to retail or unclassi-
fied units) were also excluded. The final cleaning operation identified and removed duplicate
locations (i.e., points with identical coordinates or within very close proximity), which can
unduly influence clustering results as well as the identification of outliers. These duplicate loca-
tions were typically the result of the two-dimensional representation of retail units within
multi-storey buildings. Thus, the removal of duplicates (any points within a 2 m radius from
another point) was carried out.

Estimating retail center location and extent; methods, and calibration

Cluster analysis is a collection of unsupervised learning methods that address the issue of
grouping a set of objects based on similarity. Many commonly used clustering algorithms
make group allocations with the objective of increasing similarity within a cluster and increas-
ing dissimilarity between clusters. Other commonly used clustering techniques such as density-
based algorithms seek dense regions separated by low density regions, while model-based
methods assume that the data come from a mixture of probability distributions, each of which
represents a different cluster (Gan, Ma, and Wu 2007). Cluster analysis is a multivariate tech-
nique (multiple attributes of the phenomenon under investigation can be used), but in this study
it is strictly spatial; utilizing only the locations of the retail units. This is an appropriate
approach for the identification of retail agglomerations where the extent of the clusters is deter-
mined by spatial discontinuity in unit distribution (Dearden and Wilson 2011).

An important consideration when clustering spatial data is to select a method that is sensi-
tive to the distinction between clusters that are either compact or chained (Gan, Ma, and Wu
2007) and additionally, can identify outliers outside of primary observed geographic distribu-
tions. Within a retail context, examples of compact clusters could include those retail units
residing within a city or major town center such as Wolverhampton (West Midlands) (Fig. 1A),
often with connecting voids that are pedestrianized. Chained retail clusters, conversely, often
can be observed along the road network (these are often known as “high streets” in G.B.), such
as Clapham Junction (London) (Fig. 1B).

To estimate the definition of retail centres, the following clustering methods were evalu-
ated: Density based spatial clustering of applications with noise (DBSCAN) (Ester et al. 1996),
quality threshold (QT; Scharl and Leisch 2006), KDE (Azzalini and Torelli 2007), random
walk (Csardi and Nepusz 2006), and K-means (Lloyd 1982). As will be described, all of the
clustering methods evaluated require the calibration of tuning parameters that we selected to
optimize using the S_Dbw internal evaluation indicator (Halkidi and Vazirgiannis 2002),
which has been found by Liu et al. (2010) to provide better results compared to seven other
internal validation indexes. It is defined as the sum of the mean dispersion (S) in the clusters
and of the between-cluster density (G) (Desgraupes 2013):
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Figure 1. Wolverhampton (left) and Clapham Junction in London (right) are examples of
compact retail cluster and chained retail cluster, respectively.

SDbw = S + G (1)

As such, the process of calibrating each clustering method was carried out prior to implementa-
tion in the evaluation by identifying suitable starting values (for those tuning parameters that a
single value could not be determined), then producing a number of different models within a
range of values and finally selecting the optimal model based on the S_Dbw index (i.e., select-
ing the parameter values of the model with the smallest S_Dbw value).

DBSCAN (Ester et al. 1996) was selected as it is one of the most prevalently implemented
spatial clustering algorithms that is able to find arbitrarily shaped clusters and to handle outliers
(Gan, Ma, and Wu 2007). In addition, with the use of kd-tree indexing this was the computa-
tionally fastest method tested. The greatest drawback of DBSCAN is limited sensitivity for
data sets with varying densities (Everitt et al. 2011). Our optimization for the epsilon (radius)
parameter started by calculating the distance to the four nearest neighbors for each point (Ester
et al. 1996). The distances were then sorted in ascending order and the 95th percentile value
was selected as starting epsilon. Even though this is a simple technique, k-NN distance has
been found to be a reliable proxy of local density and outlier detection, outperforming even
newer and more complicated methods (Campos et al. 2016). The minimum points parameter
was set equal to 10, which is the minimum number of retail units required for an area to be
classified as local center (Wrigley and Lambiri 2015). Following this, the DBSCAN method
was calibrated by allowing the epsilon value to vary within the range of = 20 m from the start-
ing epsilon value. Using 5 m intervals, the best clustering solution from nine DBSCAN models
for every study area was selected with the S_Dbw index. Within the study sites, the 20 m range
was used as it was found to be large enough to test as many models as possible without being
an extremely demanding task, while the 5 m interval was small enough that any difference
between models using a smaller interval was negligible.

Non-parametric density estimation (Azzalini and Torelli 2007; Azzalini and Menardi
2014) combines both KDE and a graph model that connects retailers into a network by
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proximity. In this process, KDE is used to identify a number of core clusters with density above
a certain threshold from within the spatial distribution. These are then used to create connected
regions of points (subgraphs) by means of Delaunay triangulation. The technique requires defi-
nition of a parameter value that is multiplied by the smoothing vector of the kernel estimator.
This was determined through comparison of retail boundaries delineated by respective local
authorities to outputs created with the clustering method. Suitable values for the smoothing
parameter varied between 0.4 and 1.1. Lower values resulted in too fragmented clusters, while
higher values over-smoothed, creating large and also unrealistic clusters. Multiple models were
tested, varying the smoothing parameter value using 0.05 intervals, and again selecting the
optimal clustering with the S_Dbw index. A key advantage of this method is that it is nonpara-
metric (it does not make any assumptions concerning the probability distribution), and thus is
more suitable to identify clusters of varying shapes and densities. However, it is also a stochas-
tic method, and as such it requires optimization, which has the disadvantage of increasing com-
putation times.

The QT (Scharl and Leisch 2006) identifies clusters after specification of two parameters:
the maximum diameter of the clusters and the minimum number of neighbors within a cluster.
The minimum number of neighbors was set equal to 10 which aligns to a formal definition of a
retail center within the United Kingdom (Wrigley and Lambiri, 2015). Through testing within
different contexts, the optimal radius value was highly sensitive to retail unit density variation.
After consideration of the S_Dbw index, the radius parameter was allowed to vary between
100 and 400 m with 50-m intervals for smaller urban areas (e.g., Abertillery) and between 300
and 1000 m with 100-m intervals for larger urban areas (e.g., Bristol). The algorithm initializes
by randomly selecting a point as a center of a cluster and then, for as long as the diameter is
smaller than a user specified value, it iteratively adds a point to the cluster so as to minimize
the increase in the cluster diameter. This process is repeated for a random number of sample
center points that satisfy the condition of having at least one neighbor within the specified
diameter threshold. After the largest candidate cluster is identified and removed from the data
set the process is repeated for as long as there are no remaining clusters with size greater than
the neighbor threshold. The method is also computationally intensive due to being stochastic.

Random walk was tested which is a graph-based method that is based on the Walktrap
algorithm (Pons and Latapy 2005). The algorithm finds densely connected subgraphs based on
the assumption that random short walks tend to stay within the same densely connected sub-
graph. Initially, the algorithm partitions the graph into a number of subgraphs and then com-
putes the distances to all adjacent vertices. Subsequently, for each iteration it chooses two
subgraphs to merge if they are adjacent and if they minimize the squared distances between the
vertices. The output is a dendrogram where the leaves are the vertices and each edge is a con-
nection between subgraphs. The best partition of the graph is the one that maximizes a modu-
larity criterion (Newman 2004). Optimization found that the method required a maximum
number of 50 steps to find the best model using the S_Dbw index.

The final algorithm tested was K-means, with the only parameter requiring specification
being the number of K clusters. Initially, the algorithm allocates objects randomly to each clus-
ter and, subsequently, iteratively assigns the objects to the nearest cluster according to a dis-
tance measure until either the distance measure or the membership of the clusters do not
change significantly. This method has low computational complexity, however, produces clus-
ters with convex hull shapes and it does not always identify outliers, that is, all objects are clus-
tered although may return outlier clusters with very small case frequency. In addition, the
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method is also stochastic, and therefore requires optimization through multiple runs which
occurs at the expense of computational time. Information obtained from the application of the
other clustering methods was used to calculate the starting value of the number of clusters as
the mean number of the clusters identified by DBSCAN, KDE, QT, and random walk. Subse-
quently, the method was calibrated by producing 11 models with the number of clusters vary-
ing within the range of = 5 clusters from the starting value and the optimal model was selected
based on the S_Dbw index.

In additional to the aforementioned methods, the chameleon (Karypis, Han, and Kumar
1999), fast greedy (Clauset, Newman, and Moore 2004) and ensemble (Hornik, 2007) methods
were also tested but are not used for the evaluation. Chameleon was not included given diffi-
culty in automating the process of identifying optimal values for its six tuning parameters, fast
greedy is a graph-based method that did not provide better results than the random walk and
finally the ensemble method was particularly demanding in terms of computer resources for a
nationally extensive application. Obviously, there are a plethora of other methods that have
been shown to be useful for clustering spatial data such as the DBCLASD method (Xu et al.
1998). However, an important factor for inclusion in the evaluation was that the methods were
accompanied by useful documentation that facilitated their implementation. In addition, that
there was indication they were are under active development or well established, and were
available within most programming languages.

Center definition and evaluation

The five candidate methods were evaluated over eight case study areas that are representative
in terms of G.B. retail location density and size. These included: Abertillery and Cardiff in
Wales, Bristol, Clapham Junction, Winchester, and Wolverhampton in England, Glasgow and
Inverurie in Scotland (Figs. 2 and 3).

Although there is a larger pool of other representative areas, within these specific locations
additional supplementary data were also available for cross validation and included two sour-
ces. First, local authorities within the United Kingdom are required to perform a town center
“health check” (National Planning Policy Framework [NPPF] 2012), which typically requires
them to delineate boundaries for retail centers. Even though the reports produced by the local
authorities contain rich information, the publicly available boundaries can typically only be
accessed in rendered pdf format. Given that a small number of (qualitative) comparisons can
be made against these sources without extensive redigitizing, the reports were used to assist
with input parameter specification and testing during the calibration process described in the
previous section. Second, boundaries for the 339 largest “retail places” in the United Kingdom
were acquired from the company Geolytix, and although they represent only a subset of total
retail boundaries, they nevertheless provide an additional and relatively large sample of inde-
pendent retail areas suitable for comparison.

Finally, within evaluation that follows, all clusters (identified by each clustering method)
that had less than 10 retail units were removed, which as noted earlier, is the minimum thresh-
old considered to be as part of a center. Additionally, for those clustering solutions that addi-
tionally identified outliers from the main distributions, these locations were also removed.

The remainder of this section presents the outputs of the clustering methods for two of the
larger more complex study areas: Bristol and Glasgow, alongside an overall set of evaluation
results for all case study locations.
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Figure 2. The locations of the eight case study sites in Great Britain.

Bristol has a greater than average number of retail units (2,456), high variability of retail
density and potential occurrence of different cluster shapes. The location of the retail units
(blue dots) are shown in Fig. 4 alongside labels colloquially used for the various retail centers
and their boundaries as defined by the respective local authorities.

In the past, Broadmead was recognized as the principal shopping center of Bristol, but
recent studies (Bristol City Council 2008 [unpublished]) suggest that the boundaries of Bristol
should be expanded to include the high streets of Stokes Croft south of Ashley Road (depicted
as sparse dots in Fig. 4), Christmas Steps and Old Market. The most recent Local Plan from
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Figure 3. Spatial extent of the eight case study sites.

2015 (Bristol Central Area Plan [BCAP], 2015), which is required by law, defines precisely the
boundary of a wider Bristol city center, however, the spatial extent of the individual so-called
shopping, services and the evening economy areas is less specific as these areas often have
overlapping functions. The Local Plan defines the primary shopping area as Broadmead and
Queen’s Road; in addition, it defines the primary shopping frontages (Broadmead and part of
Queen’s Road and Old City), secondary shopping frontages Stokes Croft, Old Market, Victoria
Road, and parts of Queen’s Road and Old City and leisure use frontages (part of Old City and
Broadmead).

The first clustering algorithm to be evaluated was DBSCAN, which identified 26 clusters in
the study area as can be seen in Fig. 5 (outliers are denoted by 0). Stokes Croft is part of the city of
Bristol (with the cluster boundary extending north of Ashley road), however, Old Market is not.
There is a good separation from the Gloucester Road cluster that has been identified correctly as a
single cluster. Clifton, Whiteladies and most of the town center have also been identified as sepa-
rate clusters. Within Bedminster, the western part of the area was, however, identified as a separate
cluster, most likely due to higher local density. The KDE method identified 11 clusters with a clus-
ter for the city center being fairly accurate, matching the local authority defined boundary.
However, it is obvious that the method identified fewer clusters than might be expected given the
overall retailer distribution. The clustering solutions generated by QT, K-means, and Random
Walk were somewhat similar in that they identified separate clusters in areas that are strongly con-
nected (e.g., Bristol city center, Gloucester road) while they clustered together points that are
weakly connected (e.g., Totterdown and Well road for QT and K-means, Queen’s road and Clifton
for Random Walk). A further problem with the methods is that they identified few outliers, which
results in the identification of very sparse clusters.

With 2,347 retail units, Glasgow it is the second largest study area in the analysis (Fig. 6).
There is one metropolitan retail center (Glasgow city), one regional center (Partick—Byres
road) and five town centers (Calton, Crastonhill—Yorkhill, Kelvinbridge, St. George’s
Cross—Great Western road and Woodlands) (Fig. 6). The boundary of Glasgow city is well
defined by the M8 motorway (north and west), the river Clyde (south), and the High street
(west).
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Figure 4. The study site of Bristol, blue circles represent the retail unit locations, while the
boundaries of the retail agglomerations as estimated by the local authorities are represented
with black lines or dots.

DBSCAN (Fig. 7) identified accurately the cluster of Glasgow city center, with only a few
retail units crossing the M8 on the west of the city and south of Woodlands. The QT and KDE
methods clustered the city center together with the town center of Calton. K-means and QT
also merged the western part of Glasgow city with Woodlands and St. George’s Cross. The out-
put from the Random Walk had additional issues, splitting up the larger retail areas as in the
case of Partick-Byres road. For that retail area, DBSCAN provided the most accurate result,
however, the boundary of the cluster extended to include Kelvinbridge. Concerning St.
George’s Cross, the cluster obtained from DBSCAN is a close match to the boundary defined
by the Glasgow city council and the same could be said for Woodlands.
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Figure 6. The study site of Glasgow, blue circles represent the retail unit locations, while
the boundaries of the retail agglomerations as estimated by the local authorities are

represented with black lines.
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Figure 7. A comparison of the five clustering methods within the study site of Glasgow.

Table 1 presents the overall evaluation results from the qualitative comparison for all of
the eight study areas. In most cases, the DBSCAN method provided results that were more con-
sistent with those formal definitions created from the respective local authorities. Importantly,
DBSCAN was the most efficient method in terms of computing resources and this is particu-
larly significant for a national extent study. In addition, it was easier to identify starting values
for the parameters of the method, while one of the strongest advantages of DBSCAN was the
identification of outliers.

It is clear from the results that DBSCAN performed well for the case study selection, how-
ever, this method is known to underperform in areas where the density is not uniform (Everitt
et al. 2011). Such an issue also becomes apparent when looking at the range of the optimal
epsilon values that were used for the selected areas (Table 2). If a single global epsilon value

Table 1. Results from the Qualitative Comparison of the Clustering Methods in Eight
Locations Across Great Britain

Case study area Retail center type Preferred method
Abertillery, Wales Small town center KDE, Random Walk
Bristol, England Large urban area DBSCAN

Cardiff, Wales City center DBSCAN

Clapham Street, England Large high street DBSCAN

Glasgow, Scotland Large city center DBSCAN

Inverurie, Scotland Small high street DBSCAN

Winchester, England Historic town center DBSCAN
Wolverhampton, England Regional town center DBSCAN, Random Walk
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Table 2. Optimal Epsilon Values Used by DBSCAN in the
Selected Study Areas

Study area DBSCAN epsilon (meters)
Abertillery 84
Bristol 119
Cardiff 120
Clapham Junction 70
Glasgow 70
Inverurie 120
Winchester 80
Wolverhampton 91

had been used for all case studies, it would have resulted in suboptimal local results. As such,
we developed a refinement to the method which involves splitting of the national-scale data

into more homogeneous areas for separate treatment; with the challenge being that unlike the
case study evaluations, this required automation given that coverage was for the national
extent.

Development and application of a modified DBSCAN method

To address the issue of heterogeneous density, a modified approach to DBSCAN was devel-
oped by introducing three important concepts:

(D

2)

3)

the combination of DBSCAN with graph data structures and algorithms that are used to
iteratively partition the national study area into subgraphs of successively more homo-
geneous point density;

the iterative application of DBSCAN using a local epsilon value for each subgraph, fol-
lowed by the selection of one cluster per iteration based on the condition that the epsi-
lon value is representative of the cluster’s density;

the use of a third parameter termed maximum distance to constrain the points that can
be members of a cluster to have at least one neighbor within a radius that is less than
or equal to the maximum distance. The rationale behind this decision is that distance is
an important parameter of retail spatial agglomerations, which is sensitive to gaps and
discontinuities. Given that both spatial density and spatial discontinuity determine
whether a point is part of a spatial cluster, the combination of k-nearest neighbors (a
proxy of point density) with the radius-based constraint (a proxy of spatial discontinu-
ity) facilitates neighboring locations within close proximity and similar point density to
be members of the same cluster. Compared to a post-processing removal of points
based on a distance threshold, using a distance threshold within the modeling process
has the advantage of avoiding the inclusion of outliers in the calculation of the epsilon
value but, more importantly, facilitates the decomposition of a graph into subgraphs of
more homogeneous density.

In the first step of the proposed methodology, a sparse graph representation of the spatial

data set is created based on a k-nearest neighbor matrix and the maximum distance constraint.
The vertices of the graph are the locations that have at least one neighbor within the specified
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Figure 8. A comparison of different k values to produce a sparse graph representation of
the retail locations. Lower k values result in more homogeneous (in terms of point density)
subgraphs, nevertheless, they also result in splitting sparse areas into different subgraphs.

maximum distance. Next, a Depth First Search algorithm is implemented to decompose the
sparse graph to create more homogeneous (in terms of point density and distance between the
retail units) subgraphs, under the condition that each subgraph has at least 10 vertices and that
each location has at least one neighbor within the maximum distance. The vertices that are not
part of any subgraph are removed as outliers. The maximum distance value in this study repre-
sents the maximum distance that a location can still be considered well connected to a shopping
area on foot. Different distance values have been suggested as indicators of walking distance,
ranging between 300 and 500 m (Rogstad and Dysterud 1996; NPPF 2012). Based upon the
definition of edge of center for retail purposes in the United Kingdom (DCLG 2009), the maxi-
mum distance value was set equal to 300 m. Three k values were tested to split the study area
into subgraphs, and included 4, 10, and 15 (Fig. 8). The first value was tested as it is already
used as a proxy of local density and the second value was considered as it is used by the mini-
mum points parameter of DBSCAN. As it would be expected, the lower the k value, the greater
the number and the more homogeneous the density of the subgraphs that were produced. Con-
versely, using lower k values (between 4 and 10) can result in splitting areas with low-point
density (mostly chained clusters, i.e., High Streets) into different subgraphs. For this reason the
k value was set equal to 15.

Given that the spatial extent of each subgraph depends on the connectivity and number of
points within an area, each subgraph can represent a town center, a city center or even a metro-
politan region. DBSCAN, however, assumes that the epsilon value is a representative indicator
of the local density. To fulfill that assumption, in the third step of the methodology, DBSCAN
is first applied (within each subgraph) in an exploratory approach to identify and select the
cluster that has density (as estimated by the local epsilon, i.e., the 95th percentile of the four
nearest neighbors’ distances) closer to the overall density.

Following the selection of a single cluster, all the neighboring clusters (i.e., the clusters
that share a common edge in the graph) with similar density are selected along with those
neighboring points that were identified by the exploratory DBSCAN as outliers. Following
this, a new study area of homogeneous point density is created from the selected points and
DBSCAN is applied again to identify the clusters. The selected clusters are then removed from
the graph representation of the point data, and the process of using an exploratory DBSCAN
model to identify a cluster and select those neighboring clusters with similar point density is
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Y

Clustering

Calculate Ipcal epsilon (for each cluster) | Select cluster as:
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Point Data

Figure 9. The point data are represented as a sparse graph using a distance-constrained k-NN
sparse matrix, which is decomposed into subgraphs. DBSCAN is applied in an exploratory
approach and a single cluster is selected with point density closer to the overall point density. The
neighboring clusters (that share a common edge) are also selected if their point density is similar,
along with the neighboring outlier points, forming thus a new area of homogeneous point density,
where DBSCAN is applied. The process is iteratively applied until no cluster can be formed.

iteratively carried out until no cluster can be formed. This process is summarized in Fig. 9. It

should be noted that one of the advantages of the methodology is that it is no longer required to
optimize the clustering solution using the S_Dbw index, which results in a faster algorithm.

154

dny) suonipuoD pue swe L 8L 89S *[9202/T0/LT] Uo AriqIT2UIIUO ABIIM Hin'deAlI@equRew-<UiRe[oqd US> AQ 8ETZT UesB/TTTT 0T/I0p/L00 AW Aleid Ul |UO//SdRY WO PAPeolumMOQ ‘Z '8TOZ ‘ZEIVBEST

0o fa i ArIg1RL

35UBD| 7 SUOLILLOD dAEaID 3|qedt|dde auy Aq pausenoh ae sajoie YO ‘asn JO Sa|nI 10) A%id 1 aulluQ A3|IA Uo



Michalis Pavlis et al. Clustering Retail Agglomerations

Table 3. Summary Values of Five Clustering Models with Different Standard Deviation
Thresholds

Models Number of clusters Distribution of epsilon values (m)

Standard deviation

threshold Count Minimum 25% 50% Mean 75% Maximum
0.6 2,928 80 80 80 100.3 113.0 170.0
0.8 2,922 80 80 80 100.3 113.0 170.0
1.0 2,920 80 80 80 100.3 113.0 170.0
1.2 2,923 80 80 80 100.1 113.0 170.0
1.4 2,921 80 80 80 100.1 113.0 170.0

To evaluate the point density similarity among clusters, the standard deviation of point
density in a subgraph was used. More specifically, those neighboring clusters with point density
within 1 SD from the point density of the initially selected cluster were also selected, with the
assumption being that they define an area of homogeneous point density. To test the sensitivity
of the method to the standard deviation threshold, five different values were considered, 0.6,
0.8, 1.0, 1.2, and 1.4. As can be seen in Table 3, the clustering solutions are practically identi-
cal when looking at the number of clusters produced and the distribution of the local epsilon
value.

For the parameter values required by DBSCAN, as detailed earlier, the value of the mini-
mum points parameter was set equal to 10 and the epsilon value was calculated as the 95th per-
centile of the four nearest neighbor distance. However, the epsilon value was only allowed to
vary within the range between maximum 170 m, which was found to be useful to exclude out-
liers from being identified as members of clusters, and a lower bounds of 80 m which was used
to avoid identifying certain large shopping malls as clusters. This necessity is a consequence of
the hierarchical nature of retail centers within G.B. given that the objective of the analysis was
to create clusters that were inclusive of the different functional retail forms. Following the
application of DBSCAN to each subgraph and the extraction of 2,920 clusters, the final retail
agglomerations were compiled and each retail location was assigned an identifying number
denoting cluster membership. The clusters obtained from the modified DBSCAN methodology
for the selected study areas are shown in Fig. 10 and can be compared against those created by
applying the traditional DBSCAN to each subgraph (Fig. 11). For the traditional DBSCAN
model a global epsilon equal to 107 m was applied, which was calculated as the 95% of the
four nearest neighbors distance.

When comparing the two graphs, it can be seen that in certain areas such as Bristol and
Cardiff the clustering solutions are quite similar, however, in areas such as Clapham Junction
and Wolverhampton the modified DBSCAN model appears to be more sensitive to gaps and
discontinuities, thus identifying a greater number of clusters. Particularly for Glasgow, the
modified DBSCAN method provided the only clustering solution that identified Kelvinbridge
as a separate cluster in an area of high-point density that does not provide major discontinuities
between clusters. At the same time, it was the only method that identified a sparse cluster south
of the river Clyde and west of the M8 motorway (the epsilon value was 80 m for Kelvinbridge
and 170 m for the cluster south of Glasgow). Similarly, for Inverurie, the modified DBSCAN
method used an epsilon value of 170 m to correctly identify a single cluster in the study area,
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Figure 10. The clustering solutions produced by the modified DBSCAN clustering method
for the eight case study sites.

compared to the two clusters identified by the traditional DBSCAN method when the global
epsilon value of 107 m was used.

The results derived with this new method were compared to data supplied by the company
Geolytix; which represent the only freely available and independently created national sample
of contemporary retail center extents. They provide frequent updates of a data set of retail pla-
ces across the United Kingdom, part of which (339 places) were licensed as open data in 2012.
The Geolytix boundaries are produced using multiple variables (including the locations of
retail units) (OpenData 2015) with information that was collected at least 3 years prior to the
data that were used in our analysis. Additional causes of difference between the two data sets

Figure 11. The clustering solutions produced by the DBSCAN clustering method for the
eight case study sites.
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Figure 12. The retail unit locations that are members of the cluster of the city of Glasgow
(green circles), overlaid on the Geolytix retail center boundaries.

might also include the different objectives and notion of what constitutes a retail center (Geoly-
tix did not use a threshold of minimum 10 retail units), and only the boundary polygons from
the clustered locations of the retail units were available. Given that the creation of similar poly-
gon boundaries for our new results may result in an additional source of error, it was decided to
compare the Geolytix boundaries against the retail unit locations and associated clusters. The
comparison was based on two metrics, the n-ary relation between the two data sets and the pro-
portion of points within the Geolytix polygons. The n-ary relation returns a score where the
higher the number of clusters that had one-to-one relation with the clusters identified by Geoly-
tix the better the relation.

Data pre-processing removed the major out of town retail parks from the Geolytix data set,
which was followed by a spatial join of the Geolytix data set with the clustered retailer loca-
tions. There were 294 spatial intersections between the two data sets, out of which 244 were
one-to-one. Summary values of the spatial distribution of the clustered locations within the
Geolytix boundaries are shown in Table 3. On average (based on the median value) almost
90% of the clustered points were within the Geolytix boundaries.

Glasgow (Fig. 12) serves as an example where the two data sets mostly overlap, but also
shows that the spatial extent of the clusters produced in this analysis was on average larger,
which to some extent is related to Geolytix post-processing of boundaries to be constrained by
the road network. Examples where the two data sets have significant differences include Bristol
(Fig. 13) and London (Fig. 14).

Concerning Bristol, it can be seen that Geolytix split the city center into smaller clusters,
of which only Broadmead was available as open data. However, the clustering solution for
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Figure 13. The retail unit locations that are members of the cluster of the city of Bristol
(green circles), overlaid on the Geolytix retail center boundaries (only the area around the
Broadmead shopping district was available as open data).

Bristol that was produced in this analysis was very similar to the one produced by the Bristol
local authority and, thus, arguably more appropriate based on this local knowledge. Geolytix
also split London into smaller clusters, seven of which were available for the area that was
identified by the modified DBSCAN method as a single cluster. A possible reason for this dif-
ference could be that Geolytix used additional variables in their clustering method, which,

Figure 14. The retail unit locations that are members of the cluster of the city of London
(green circles), overlaid on the Geolytix retail center boundaries.
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Table 4. Summary Values Describing the Spatial Distribution of the Clustered Locations
within the Geolytix Boundaries

Minimum First quartile Median Mean Third quartile Maximum
0.68 63.97 89.81 73.99 95.99 100.00

particularly for London, would result in identifying clusters based on different retail activities
rather than just retail density. Despite these mismatches that to some extent are related to dif-
ferent objectives and notions of what constitutes a retail center, it could be argued that the two
clustering solutions largely overlap in the areas that were available by the open source Geolytix
retail places, which provides evidence for the validity of the retail clusters that were produced
in this work vis-a-vis competing methods (Table 4).

Conclusions

The objective of this analysis was to develop a clustering method that would facilitate the iden-
tification of retail agglomerations across a national extent and that could be updated over time.
For this purpose, five of the most frequently used clustering methods were compared within
eight representative locations across G.B. The DBSCAN method was selected on the basis that
it provided the most accurate representation of those retail areas relative to formal definitions;
it was faster to produce a clustering solution and also easier to calibrate optimized input param-
eter values.

However, to address a well-known issue that DBSCAN does not cope well in areas of
varying densities, the DBSCAN method was adapted so that it could be iteratively applied
within smaller more homogeneous sites that were created using a k-NN sparse graph represen-
tation of the retail locations. Each selected retail cluster was created by the DBSCAN algorithm
with an epsilon value that was representative of the local point density. The clusters produced
were comparable to those retail areas designated by the local authorities for the sample areas of
study, and in some cases, were more accurate when compared to the traditional DBSCAN
method. In addition, the identified clusters were in most areas similar in terms of spatial extent
to those produced by the Geolytix company using alternative data set and methodology. It
should be noted that even though the suggested method is more demanding in terms of com-
puter resources compared to the traditional DBSCAN, it scales better as it could be applied in
parallel for each subgraph.

Furthermore, the output of this analysis provides a better spatial coverage and option for
automated update in comparison to the existing DCLG town center boundaries. Given that the
DCLG boundaries were widely used by academics, local authorities and private organizations
across the country it can be anticipated that these results will prove to be valuable for research
and analysis.

With the developed methodology being open source (https://github.com/mpavlis/graph_
dbscan), it will also be straightforward to update the retail boundaries on a regular basis, and
potentially apply the suggested method within a context of historic data. Finally, given the vari-
ety in point density, size, and shape of the retail clusters in the data set it would be reasonable
to assume that the methodology could be applicable with different data sets and for different
international locations.
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