
Creating open source geodemographics: Refining a national
classification of census output areas for applications in
higher education

Alexander D. Singleton1, Paul A. Longley1

1 Department of Geography and Centre for Advanced Spatial Analysis, University College London, Gower Street,
London WC1E 6BT, United Kingdom (e-mail: a.singleton@ucl.ac.uk, plongley@geog.ucl.ac.uk)

Received: 1 August 2007 / Accepted: 6 May 2008

Abstract. This paper explores the use of geodemographic classifications to investigate the
social, economic and spatial dimensions of participation in Higher Education (HE). Education
is a public service that confers very significant and tangible benefits upon receiving individuals:
as such, we argue that understanding the geodemography of educational opportunity requires an
application-specific classification that exploits under-used educational data sources. We develop
a classification for the UK higher education sector, and apply it to the Gospel Oak area of
London. We discuss the wider merits of sector specific applications of geodemographics and
enumerate the advantages of bespoke classifications for applications in public service provision.
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1 Introduction

This paper addresses the development and application of geodemographic classifications to
better understand participation in UK Higher Education (HE). Our motivation originates in the
observation that general purpose classification systems (such as those marketed by commercial
providers) can claim no particular status in accounting for the consumption of the various
services provided by the public sector, the more so because of the ‘black box’ nature of the
weighting schemes used to derive such classification systems. Moreover, there is clearly a
spatial, as well as a socio-economic, dimension to the pattern of participation in higher educa-
tion (Sá et al. 2004).

Accordingly, we seek instead to develop a bespoke geodemographic clustering system to
account for decision making in relation to prevailing provision of HE, using HE data provided
by the Higher Education Statistics Agency (HESA: www.hesa.ac.uk) and Universities and
Colleges Admissions Service (UCAS: www.ucas.ac.uk). As is the case with most commercial
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classifications, census data account for a substantial part (or in the unique case of people and
places (P2) from Beacon Dodsworth1 all of the data), but our approach is to supplement these
with systematically collected HE domain-specific data rather than the mélange of shopping
questionnaires and other sources that are used in developing commercial classifications. The
enrichment of census-based classifications using ancillary, sometimes domain-specific, sources
presents a contested, even emotive, issue in geodemographic classification. The sources and
operation of bias in shopping questionnaires and other ‘lifestyle’ sources is unknown, but
nevertheless likely to be systematic, for example because the ‘have nots’ in society are less likely
than the ‘haves’ to consume a large basket of goods and services, or because those that evade
enumeration in shopping surveys are unlikely to be representative of those that do. As a
consequence, we agree with those analysts who relegate the use of such sources to the labelling
of the clusters of general purpose classifications, rather than using them as an intrinsic part of
the clustering process. However, in our own application, the focus is upon the HE sector, for
which comprehensive, sector-specific data are available. In these circumstances, we think it
entirely appropriate to incorporate sector specific data into the clustering process itself. While a
number of commercial geodemographic systems have been used to account for differences in
the uptake of HE between different groups and to inform the allocation of public funds for HE
(Batey et al. 1999; Brown et al. 2000), we believe that our classification is the first to have been
specifically designed for this purpose.

Our methodology is dependent upon the National Statistics output area classification (OAC:
Vickers and Rees 2007), which is an open source geodemographic typology built entirely from
the 2001 census data. Unlike commercial solutions, the derivation of this classification is in the
public domain, the classification can be reproduced entirely from public data sources and it has
the status of a national statistic. OAC divides neighbourhoods into a hierarchy consisting of
seven supergroups, 21 groups and 52 subgroups in a way that is designed to present balanced
summary measures of demographic and socio-economic conditions. For present purposes,
however, it is deficient in data that are directly linked to participation in collectively provided
education services. In seeking to remedy this, a technical contribution of this paper is to create
a further level to the OAC hierarchy, further dividing the Subgroups into 176 ‘microgroups’ that
can be used to classify all UK Output Areas (OAs). HE data are appended to these microgroups,
which are then re-clustered to build a new two level hierarchical classification informed directly
by education domain data.

We suggest that this is a valid and useful reworking of the OAC classification prior to its use
as part of a bespoke (i.e. application specific) educational geodemographic system, and that it
has wider implications for the development of bespoke geodemographic discriminators for
which domain specific data can be made available at fine spatial levels of granularity. We suggest
that this approach has inherent advantages over attempts to ‘re-badge’ commercial classifica-
tions, and that it has wider implications for applications concerning the uptake and use of public
goods and services. Moreover, we argue that greater transparency in the construction and
weighting of geodemographic classifications is an important consideration when applications
raise issues of social equity in the allocation of public goods and services. Such considerations
have, in our experience, curtailed the enthusiasm of public sector agencies for geodemographic
classification, given that classification usually brings obvious implications for the allocation of
publicly-funded resources.

In the remainder of this paper we begin by describing the creation of a bespoke geodemo-
graphic classification that combines public domain and HE sector-specific data, using clearly

1 A further partial exception is Health Acorn (www.caci.co.uk/acorn/healthacorn.asp). This does not directly include
health sector data, but does include other data relating to health outcomes, e.g. diet information.
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specified techniques and tools. We then develop a pilot application which might be refined and
deployed as a service to higher education for a range of applications.

2 University enrolment and HE data

The Universities and Colleges Admissions Service (UCAS) centrally manages the application
process for almost every full-time undergraduate HE course in the UK. Applicants make an
initial selection of six choices (applications) which each identifies an institution, course and
campus. UCAS is the custodian of these data along with various attributes of the individual
applicant. The majority of applicants submit their applications electronically and much of the
data processing is automated.

In order for HE funding councils to apportion funds appropriately based on student admis-
sions through UCAS, data are required on the size, and nature of each institution’s annual intake.
These data are acquired through the Higher Education Statistics Agency (HESA), which serves
as the “central source for collection and dissemination of statistics about publicly funded UK
higher education” (HESA 2006). All publicly-funded UK HE institutions are required to submit
an annual ‘HESA Return’, which follows a standard format that details the numbers and
characteristics of students within the institution. Various data are collected: however the most
important source in terms of volume is derived from UCAS sources supplied at the end of each
annual application cycle. Institutions are encouraged to maintain and update these data as they
can have bearing on aspects of central government funding in subsequent academic years. Data
sourced by HESA through UCAS and other sources make it possible for the Higher Education
Funding Council for England (HEFCE) to calculate institutional allocations of additional
government funding to support widening participation initiatives amongst young participants
(defined as aged less than 21): in this case, the measure is derived by students being grouped into
participation rate bands assigned by the ward in which they reside (HEFCE 2005). The two key
datasets for the HE sector are assembled by UCAS and HESA, and it is the former of these that
is specifically associated with undergraduate admissions. Both UCAS and HESA made data
available for this study, and the variables that are of interest are discussed below.

Having asserted that the nature and consequences of decision-making in HE justifies the
development of a bespoke geodemographic system, it is incumbent upon us to outline the range
of applications in which such geodemographic discriminators may be useful. HE activities
including institutional marketing, extending access, widening participation or subject specific
targeting are all candidate applications, and these should therefore be borne in mind when
identifying candidate input variables for inclusion within the classification. In the literature on
widening participation from which these applications predominantly extend there are a range of
discussions on the determinants of access to HE inequalities. Reid (1998) discusses that there
are two interpretations of inequality in HE: first, that there is bias in the university selection
process; and second, social class has an inhibitor effect on the perceived availability or benefits
of HE. The first of these interpretations was publicly highlighted in 2001 with the case of Laura
Spence. Her rejection by the University of Oxford on the basis that she “did not show potential”
created a media circus that even involved the then Chancellor of the Exchequer (and now Prime
Minister) who declared it “an absolute scandal”. The second of these interpretations relates to
how middle class parents “invest all kinds of effort, including significant material resources in
developing social capital” (Walker 2003, p. 172), creating environments where socialization
processes can occur, and creating advantage or disadvantage under certain situations (Bourdieu
and Passeron 1977). Outside of the social, cultural and economic influences upon human capital
accumulation, the 2003 Higher Education White Paper (DfES 2003, p. 68) accepted that “the
single most important cause of the social class division in HE participation is differential
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attainment in schools and colleges”. It is therefore important to select input variables for their
ability to stratify both recorded causes of participation disadvantage such as variable attainment,
and also attempt to measure those conceptual causes such as human capital accumulation. The
data available for this study are for 2001 and cover all students domiciled in England and
studying at English institutions. This database contains a variety of suitable variables for
inclusion in the cluster analysis and those selected for our analysis are shown in Table 1.
Variables were selected in order to measure the characteristics of applicants relative to a range
of pertinent baseline data (e.g., ethnic group, receipt of independent education, course choice,
distance travelled). They include direct measures of participation (e.g., participation rate) and
characteristics that are frequently deemed likely causes of inequalities in applications (e.g.,
social class and A level scores). A core advantage in using education domain specific data to

Table 1. HE input variables to the cluster analysis

Variable Numerator Denominator

Young participation rates First year students aged 18–19. Census 2001 18–19
Average distance from student’s home to

institution
N/A N/A

Average A Level Score of students N/A N/A
Proportion of students from low social class

groups
Undergraduate degree students from the

three lowest social classes (IIIM, IV, V)
All undergraduate degree

students
Proportions participating in particular

degree course groupings*
Students studying undergraduate degree

courses within groupings (A–X).*
All undergraduate degree

students
Proportion from ethnic minority groups* Undergraduate students from ethnic

minority groups.
All undergraduate degree

students
Proportion of students previously educated

in independent schools in Years 12 and
13

Undergraduate students who previously
attended independent schools.

All undergraduate degree
students

Note: * = Course and ethnic groups are defined in Table 2.

Table 2. Course and ethnicity groupings

Course groups Short code Ethnicity groups

Medicine and dentistry A White
Subjects allied to medicine B Black or Black British – Caribbean
Biological sciences C Black or Black British – African
Veterinary science, agriculture and related D Other Black background
Physical sciences F Asian or Asian British – Indian
Mathematical and computer sciences G Asian or Asian British – Pakistani
Engineering H Asian or Asian British – Bangladeshi
Technologies J Chinese or other ethnic background – Chinese
Architecture, building and planning K Other Asian background
Social studies L
Law M
Business and administration studies N
Mass communications and documentation P
Linguistics, classics and related Q
European languages, literature and related R
Non-European languages and related T
Historical and philosophical studies V
Creative arts and design W
Education X
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inform the classification process is that the groups which result from the clustering procedures
are likely to better fit the underlying dimensions which they seek to represent. Thus, for an
application in HE, it is sensible to include variables relating to those actual participants in HE,
rather than a blend of possibly undisclosed variables which may show some correlation to the
social, economic and spatial patterns they are seeking to measure.

The inclusion of such data does, however, result in some circularity in the reasoning given
that a core aim of the classification is to account for participation rates. In defence of this
decision it should be noted that cluster analysis does not suffer those same limitations of
regression based statistical models as the algorithm seeks similarity rather than explanation. A
related point concerns the intended use of the classification to investigate ‘what if?’ scenarios
rather than ‘what is?’ cross sectional analyses. In this context, we note that commercial vendor
CACI Ltd. has recently moved towards sector specific geodemographic classification for the
health domain, for motivations relating to prediction that are similar to our own approach. An
alternative approach, successfully used in commercial systems, is to use non census data such
as shopping surveys to provide externally generated descriptors of the classes that emerge from
cluster analysis. Such data are kept external to the actual classification process because the
sources and operation of biases in their collection are not known. However, our view is that in
the case of education data, these ancillary sources are comprehensive and dependable, and as
such are worthy of inclusion in the specification.

Although young participants as defined by HEFCE are applicants accepted by an HE
institution who are aged 21 years or younger, in practice the majority who were accepted
through UCAS during the period 2000–2004 were aged 18–19. For purposes of estimating
participation rates, a base population of 18–19 year olds was extracted from the 2001 census and
compared with the average number of same age band students from the HESA data known to be
attending HE. If a 2001 census base count of all residents aged 21 or less had been used this
would of course produce far lower ‘participation’ rate figures, and might be biased – for
example, in underestimating participation rates in new estates with young families whose
offspring are only just entering the 18–21 cohort.

The use of distance travelled to accept a degree place provides a useful proxy for the
geographic constraints upon choice (Sá et al. 2004) that are particularly incumbent upon some
applicants from lower socio-economic groups, either because of the financial cost of travel to a
distant institution or the social networks which may bind them to their local communities (Reay
et al. 2005). Straight line (‘crow fly’) distance between the accepting institution and the stu-
dent’s home is used in this analysis, on grounds of simplicity and ease of calculation. (It is, of
course, the case that mobility may be more prevalent in and around metropolitan areas which
have public transport hubs.) The co-ordinates for student home locations and chosen HE
destinations were taken from the 2001 All Fields Postcode Directory. Including distance in the
classification is useful to identify areas where students are less likely to travel, particularly if
they reside at home, a factor which often indicates limited financial means.

The 2001 HESA data measure UK A level attainment on a points scale, ranging from 10
points for an A grade to 2 points for an E, and summed across all subjects of study. Prior
attainment, particularly with regard to traditional academic qualifications such as A level have
been seen as “key to the reaffirmation of middle class privilege in education and employment”
(Leathwood and Hutchings 2003, p. 153) and as such is likely to provide a good discriminator
of neighbourhood inequality of outcome. Where these scores are not recorded in the HESA data,
applicants will usually have qualified for HE through a non A level route; for the purposes of this
analysis these are recorded separately as a binary non-A level variable.

In 2001, HESA data on social class were recorded using the Registrar General’s social scale,
which groups occupations into seven different categories. Low rates of participation by those
from households with earners in skilled manual, partly skilled and unskilled occupations have
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been documented ever since the Robbins Report (Robbins 1963), and the extent to which these
social barriers have been successfully addressed is debatable. In order for the classification to
discriminate between the higher and lower social echelons, a variable was created to record the
frequency of students from these three social groups.

The 2001 HESA data used the standard classification of academic subjects (SCAS) to
aggregate individual courses into subject groupings. The extent to which different neighbour-
hood types participate across these subjects is critical for both marketing and widening partici-
pation initiatives. The inclusion of the proportion of students within each subject grouping is
intended to improve the ability of the classification to discriminate according to subject of study.
Information on student ethnicity was included because membership of some ethnic minority
groups has been observed to be associated with low participation in some subjects and markedly
higher participation with others (Gilchrist et al. 2003).

An index score can be used to show the under- or over-representation of an observed
characteristic within a target group (such as participation in HE) relative to the base population
– as in Equation 1 where the participation rates in HE within group t are compared to those
prevailing in the base population b.

I

t

t

b

b

n

n

n
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Table 3 shows index scores created using the 2005 UCAS acceptance data that illustrate the
differing propensities of ethnic groups to participate in different courses. It can be seen, for

Table 3. Indexed participation rates in different subject groupings according to ethnicity and subject of study

Course groups Short
code

Asian Black Mixed Other White

Medicine and dentistry A 246 63 124 188 88
Subjects allied to medicine B 152 135 76 116 93
Biological sciences C 68 76 100 83 107
Veterinary science, agriculture and related D 26 16 36 27 117
Physical sciences F 54 36 75 41 113
Mathematical and computer Sciences G 190 137 93 137 85
Engineering H 123 137 96 130 94
Technologies J 72 64 73 100 106
Architecture, building and planning K 97 85 88 101 101
Social studies L 92 158 110 99 97
Law M 178 147 108 140 88
Business and administrative studies N 165 159 94 126 87
Mass communications and documentation P 57 111 129 104 104
Linguistics, classics and related Q 41 38 112 73 112
European languages, literature and related R 24 30 121 76 116
Non-European languages and related T 42 31 195 116 111
Historical and philosophical studies V 28 20 90 70 116
Creative arts and design W 40 67 118 92 107
Education X 46 50 53 51 112

Source: 2005 UCAS acceptances.
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example, that students of Asian ethnicity are almost 2.5 times more likely to study medicine or
dentistry than the student population as a whole.

The inclusion of a variable identifying whether a student previously attended independent
school is designed to improve the ability of the classification to identify those neighbourhoods
which supply disproportionate numbers of students previously educated outside the state sector.
One of the HEFCE widening participation performance indicators is based on proportion of
students coming from state schools, so the inclusion of this variable is in line with this
performance measure.

The full range of additional variables included in the cluster analysis is detailed in Table 4.

3 Creating the building blocks of an open source geodemographic classification

In recent years, the more proactive stance of UK government departments towards the dissemi-
nation of public statistics, including the Census of Population, has made it possible for a greatly
broadened constituency of interested parties to develop their own classifications of neighbour-
hood characteristics. However, the construction of geodemographic classifications is a skilled
task, and this new freedom inevitably raises issues surrounding the inter-correlation of census
measures, as well as considerations of how compound indicators might be construed as repre-
senting a single or multiple construct of reality. Many of these issues have already received
detailed investigation in the creation of successful general purpose classifications, and thus there
is merit in building upon the achievements of such classifications as a base upon which to add
bespoke elements. The UK Office of National Statistics’ (ONS) output area classification (OAC:
Vickers and Rees 2007) was created from the 2001 census using 41 variables common across
all of the UK, and describes the demographic, household composition, socio-economic and
employment characteristics of each census output area (OA) in England, Scotland, Wales and

Table 4. Variables included in the cluster analysis and their short code references

Variables

A level points Social studies
Distance travelled to attend institution Politics and law
Lower Social Class Business and administrative studies
Black Caribbean Mass communications and documentation
Black African Linguistics, classics and related subjects
Other Black European languages, literature and related subjects
Asian Indian Eastern, Asiatic, African, American and Australasian Languages.
Asian Pakistani Humanities
Asian Bangladeshi Creative arts
Chinese Education
Other Ethnicity Combined and general courses not otherwise classified
18–19 young participation rates No A level points (i.e., non A level qualifications)
Medicine and dentistry
Subjects allied to medicine
Biological Sciences
Agriculture and related subjects
Physical Sciences
Mathematical sciences and informatics
Engineering
Technology
Architecture, building and planning
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Northern Ireland. Vickers and Rees used k-means clustering to create a high order classification
comprising seven supergroups. The input data pertaining to the OAs that had been classified into
these seven clusters were then subdivided, and each re-clustered to create a second tier com-
prising 21 groups. This process was then repeated for a third tier of 52 Subgroups (see Figure 1).
OAC has been ratified as a UK national statistic by ONS, and the classification can be
downloaded from its user group website (www.areaclassification.org.uk). The classification has
recently been appended to a series of large national datasets including the National Statistics
Postcode Directory and the 2001 Census of Population.

The variables included in OAC were selected to “represent the main dimensions of the 2001
Census” (Vickers and Rees 2007, p. 383), and although these do include a single variable on HE
attainment, they do not incorporate direct measures of area HE participation rates in either
aggregate form, or broken down by subject preference. It is the aim of our classification to infuse
spatial variation in socio-economic characteristics pertinent to HE participation into the OAC
classification hierarchy. Vickers and Rees (2007, p. 381) take the established line that when
clustering data “there is no right or wrong answer”, just a range of different combinations
leading to an “infinite number of parallel classifications”. This view is also presented by Gordon
(1981), who contends that the statistical process of ‘clustering’ of attribute space can better be
considered to be a process of dissection, wherein clusters should not be conceived as discrete
objects existing within a multidimensional space, but rather as the outcome of dissecting more
subjective and fluid categories, the boundaries of which can be repositioned to create alternative
representations.

In the context of these arguments, there are two broad methods which might be used to build
upon the experience of the OAC classification in order to construct an educationally weighted
geodemographic classification:

1. Re-cluster a new classification from OA level upwards, based upon the documented experi-
ence of creating OAC, but including educational data alongside the original OA data in the
‘bottom up’ classification.

2. Adapt the existing OA classification, by re-clustering it from a finer scale created as a
disaggregation of subgroups, and after adding sector specific data.

There are a number of problems associated with the former option. First, the classification would
need to be recreated from first principles, and the valuable qualitative experience of creating the
OAC would need to be re-learned, for example, with respect to comprehensive evaluation and
normalization of input variables. Second, while the variables used in the OAC classification
are generally quite highly variable interval scale counts derived from decennial census data,

Fig. 1. The national statistics output area classification hierarchy
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participation rates in HE tend inevitably to fluctuate at fine geographical scales between years
(Corver 2005). This is likely to create an uneven geographical coverage which would either
increase the prevalence of outlier values or require many structural zeroes to be accommodated
in the geographic matrix, with deleterious consequences for the classification procedure. This in
turn would lead to a need for standardization and careful population weighting. For these
reasons, we chose to pursue the second option.

The first stage in developing the bespoke educational classification entailed the creation of
a new finer tier in the OAC typology. This proceeded in a way analogous (albeit different
procedurally) to Experian’s (Nottingham, UK) Mosaic™ product, which provides a 243 cluster
disaggregation of its 61 types. Previous work using the Mosaic™ classification (Singleton and
Farr 2004) has suggested that this fine level of disaggregation is effective for re-clustering of
education data.

Commercial classification builders tend to cluster at the finest level first and then aggregate
these fine segments into successively larger groups. The OAC methodology created the classi-
fication in the opposite way, disaggregating first at the highest level and then dividing these
groups into the smaller clusters which form the lower two tiers. OAC was created using the
k-means clustering method (MacQueen 1967). This is an iterative relocation algorithm that
assigns each data point into one of k clusters based on a standardized Euclidean minimum
distance metric. The algorithm seeds the initial locations of the k cluster centroids as random
data points within this data matrix. The distance of the data points to each cluster centroid is then
calculated, and each data point is provisionally assigned to its nearest cluster centre. A clustering
criterion statistic is then applied to measure the homogeneity within these temporary cluster
allocations. After the first iteration of the model, the k-means algorithm attempts to find a local
optimum through an objective function that reallocates data points iteratively from their initial
assignments. Each data point is considered for reallocation to other clusters, and after each test
the model objective function is recalculated. Where reassignment of data points does occur, the
cluster centroid values for the gaining and losing clusters are recalculated. Once the objective
function is minimized, or the user-specified maximum number of iterations is reached, no
further reallocation of data points takes place. However, writing in the 1970s, Everitt (1974,
p. 26) observed that “there is no way of knowing whether or not the maximum of the criterion
has been reached”. This is because in a single k-means model there are likely to be multiple local
optima, since the random placement of the initial cluster seed centroid means that multiple
locally optimized models are possible. Using the data from the OAC classification, Figure 2
illustrates the problem of running models starting from two different initial values to conver-
gence, with k = 9 and two variables (Black versus Asian – Indian, Pakistani or Bangladeshi).

These graphs show how the path of the cluster centroid can converge upon entirely different
locations, depending upon the random placing of the initial seed. Furthermore, as each iteration
of the model reallocates data points to cluster centroids, “making the ‘best’ decision at each
particular step does not necessarily lead to an optimal solution over-all” (Harris et al. 2005,
p. 162). While the partitioning of the input data in any given cluster model is globally optimized,
this outcome may be critically dependent upon initial conditions – specifically the random
placing of the cluster seeds – and there is no benchmark of global model performance for an
individual data set. However, recent experimentation with multiple seeding algorithms (Bruns-
don and Charlton 2006) suggests that, given sufficient computational power, a globally opti-
mized local model can be obtained by running k-means multiple times to convergence,
comparing the results from each cluster analysis and saving the best performing classification.
Figure 3 shows the results from the same k = 9 model which was run with a random seed
allocation 150 times: for each model an R-squared statistic was generated in order to estimate
the quality of the model discrimination. This graph highlights the variability in overall model
performance arising from placement of the initial seeds.
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A further issue with the k-means algorithm is the a priori decision to define an ‘appropriate’
number of clusters. In describing the construction of OAC, Vickers and Rees (2007) cite the
prevailing views of geodemographic practitioners about appropriate cluster frequency, based on
understanding of what has been deemed successful practice in commercial products. This leads
them to advocate a three tier partitioning of 2001 census data, first into seven, 21 and then 52
partitions of their OA data. A further method demonstrated in a geographical context by
Debenham (2001) is to calculate the average distance between the data points and their assigned
cluster centroid at model convergence for a range of different k values. A judgement can then
be made on an appropriate number of clusters, weighing up the relative merits of a cluster
taxonomy which can be readily interpreted by end users, and a level of detail which yields
reasonably homogenous within-cluster characteristics.

The non-educational input data used to create the finer level classification consisted of the
same set of standardized 2001 census variables at OA level that was used to construct OAC. This
dataset was split into 52 separate groupings of output areas mirroring their assignments in the
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Fig. 2. An illustration of the effect of random initial seed locations upon final model outcome
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OAC subgroup classification and each of the resulting 52 datasets was separately re-clustered
using the k-means algorithm of the SAS (www.sas.com) statistical software.

Different numbers of OAs are assigned to each OAC subgroup and it is necessary to take this
into account in any further partitioning of subgroups in order to maintain a balanced degree of
uniformity between the newly created microgroups at OA level. The alternative of dividing each
of the 52 datasets by the same k value would create clusters of quite starkly varying sizes
because the totals of the 18–19 year old population contained within each of them would differ.
The outline objective was to create a total of around 264 clusters (microgroups) of approxi-
mately similar size across all 52 separate datasets, in order to create a classification that was
comparable with commercial offerings. The population distribution shown in Figure 4 was used
to estimate the initial frequency of the divisions required to create the microgroup classification.
The x axis records the 52 OAC subgroups (ordered by ascending population size), and the y axis
denotes the total percentage of 18–19 year olds within each OAC subgroup as measured in the
2001 census. The initial estimated divisions (k values) that would be required to create the
microgroup classification with even population between clusters are denoted on the bars. These
estimates are calculated by apportioning the total microgroups required (264) within each
subgroup using percentage figures of the 18–19 year old population. Some measure of accom-
modating variable target population size within OAC subgroups is necessary, since partitioning
all of the OAC subgroups evenly (e.g., 264 / 52 = ~5) would create microgroups with a very
uneven distribution in the 18–19 population cohort. It was found that if uneven clusters such as
these were used as the basis upon which to build a bespoke educational classification, they
caused the formation of a new classification with very uneven population size and as such with
limited applicability. The decisions to adopt the Vickers and Rees classification size and
partitioning, to run a pre-specified number of cluster runs and to manually assign a number of
k values (in order to create more evenly distributed clusters) are each inherently subjective. In
the case of our classification we do, however, argue that they are transparent, and that the
assumptions that we have made do not impede the scientific reproducibility of our classification.

Even after apportioning initial clustering values using 18–19 year old population size, the
clustering algorithm still created a number of outlier clusters. In order to minimize the number

Fig. 4. Percentages of all 18–19 year olds falling into each OAC subgroup and their assigned k values
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of small population counts within clusters, thus improving the uniformity of between micro-
group population, a number of the k values were therefore manually assigned in order to create
more evenly distributed clusters. Although this is not desirable in a classification designed with
a transparent and defendable build process, it was deemed necessary to prevent very small
outliers being created, and as such having a negative effect in the final classification. Similar
amendments to outlying values, and indeed to the distributions of input variables, are made in
other successful geodemographic classifications (Brown et al. 2000). Where the initial division
of subgroup datasets had created outlier clusters (of small population size), different values of
k were re-assigned and then tested in order to assess whether they might create more uniform
cluster populations. The final outcome was the creation of the microgroup classification which
divided all output areas into 176 microgroups. This was less than the initial aim (264), but
resulted in a classification with a reasonably even population distribution of 18–19 year olds.
This microgroup classification provided the base classification onto which the education data
were appended.

4 Building the bespoke HE geodemographic classification

Individual student records from HESA data were georeferenced to home unit postcodes and
linked to output areas using the All Fields Postcode Directory.2 These output areas were then
joined to the microgroup classification, thereby assigning each student from the HESA database
to one of the 176 clusters. A series of binary scores (e.g., to represent subject of study) was
created for a number of categorical attributes about the individuals contained within in the
database. Additionally a number of continuous variables (see Table 1) were also created for each
student (e.g., distance travelled from home to study at university). Using microgroups as an
aggregating field, the HESA data were grouped using structured query language (SQL). Binary
variables were summed to create total frequencies of students according to microgroup for a
range of attributes, and the median values of continuously scored student variables were created
for each microgroup. Thus, the output dataset consisted of 176 rows for the microgroups and a
series of columns for both frequency counts or average scores for a range of variables relating
to those students classified by the microgroups.

The frequency counts for each microgroup were converted to index scores (where 100
denoted average incidence, 200 double the incidence, and so forth) derived from a base
distribution of the total frequency of students recorded in the HESA database. The ‘young
participation’ variable, taken from the 2001 Census, used a base score of the total number of
18–19 year olds. The continuous variables (e.g., distance) that were averaged by microgroup
were not converted to index scores, however, because the clustering model required that all
input data are measured on the same scale both the frequency and the average variables were
converted to z-scores. The clustering algorithm treats all variables as continuous and as such the
scale must be comparable between variables, otherwise those variables with a larger range will
have adverse affect on the final assignment of clusters, skewing results towards their extreme
values. The process of conversion to z-scores was used to control for the different scales used to
measure the input variables, representing all variables using a standard deviation unit of mea-
surement. Before clustering, the microgroups with their standardized input variables were
weighted by the total population within each cluster, thereby reducing the influence of those
microgroups with smaller population sizes. Unweighted k-means is often used for outlier

2 This is now called the National Postcode Directory and is available from the ONS website: http://
www.statistics.gov.uk/geography/nspd.asp
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detection in multidimensional datasets, but in geodemographic applications, very low popula-
tion counts in some clustering units can reduce the efficiency with which it is possible to both
describe and discriminate between clusters.

Additionally, before performing cluster analysis, the data were explored to examine the
correlations between the variables. It is the case that high correlations amongst the raw variables
included within a cluster analysis result in data redundancy and can have undesirable effects in
the final assignments to clusters (Vickers and Rees 2007). Harris et al. (2005) also emphasize the
importance of including variables that add new information rather than repeat what is already
known. It is claimed, for example, that the methodology employed by Experian in the construc-
tion of Mosaic™ allows correlations to be accommodated through the use of weighting
schemes, albeit at the expense of introducing subjective value judgments to the classification
procedure. Insofar as such weights are not made public, such weighting also renders classifi-
cations opaque and non-reproducible by other researchers. For these reasons our own interim
view is that, for clustering applications in the public sector, weighting schemes are difficult to
justify if they are not empirically grounded and are potentially influenced by the predilections
and experiences of the clustering solution creator. This essentially inductive view is that the
disbenefit of noise and uncertainty generated by data led generalization are outweighed by the
greater risk of straightjacketing a classification to realize pre-ordained outcomes. Only recently
have studies been conducted into how weighting schemes can be automated through an adap-
tation of the k-means algorithm (Huang et al. 2005): such algorithms remain relatively untested
and have not as yet been implemented in commercially available statistical software. Other
applications of cluster analysis have side-stepped the complexities of including multiple vari-
ables with their related correlations through the reductive technique of principal components
analysis (PCA), where ‘each component represents a weighted combination of the original
variables’ (Voas and Williamson 2001, p. 65). Although some view PCA as useful to filter
variables that may be redundant or have negative effects upon classification outcomes (Deben-
ham et al. 2002), a contrary view is that the technique results in undesirable information loss and
creates complexity in results which are difficult to interpret (Harris et al. 2005).

Correlations between input variables have the effect of adding extra weight to one or more
dimensions of the classification, thereby creating a very similar effect to manual weighting of
raw variable scores. In the absence of manual weighting of correlated variables, the only way to
avoid such weighting effects would be to disregard highly correlated variables, raising the
question of which of the correlated variables to remove. The analysis of correlation effects and
identification of the thresholds at which they should be deemed undesirable presents difficult
decisions in practice.

Geodemographic classification through cluster analysis therefore inevitably presents a
dilemma between seeking to let the data speak for themselves (Everitt and Dunn 1983) and
using manual intervention to create a classification that is intuitive, fit for purpose and defen-
sible. Unlike commercial classifications, the clustering procedures which created OAC were
performed without weighting, and although these weighting schema could have improved
overall classification performance and possibly aid discrimination between areas, the argument
of Vickers and Rees (2007) is that it would have added potential bias and introduce subjectivity
into the composition of output clusters. We are persuaded by these arguments in the creation of
our own classification for what is essentially a range of public sector applications.

A key purpose of the HE classification under development here is discrimination between
areas that are characterized by abnormally high or low participation rates. One would expect the
various factors which lead to these patterns of inequality to be highly correlated – for example
A level points score with social class as it is well documented in the literature that there are
relationships between these variables (Reid 1998). Both of these variables contribute towards
low participation and as such should be included in a classification wishing to measure this
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dimension. Their potential correlation re-enforces an important dimension of the classification
and as such should be allowed to manifest in the final cluster assignment.

In order to further understand the pattern of correlation amongst the microgroups within the
data, a correlation matrix of all input variables was created using a Pearson correlation coeffi-
cient (though not reproduced here for reasons of space). High intercorrelation was apparent
between A level points score, education at independent schools, distance travelled to accept a
place and HE participation rates of those aged 18–19. As one would expect, each of these
variables exhibits a strong negative correlation with low social class and entry through routes
other than A levels. These patterns are unsurprising and the variables are core to the ability of the
classification to discriminate between areas of high and low participation. One would also
expect the values of these variables to correspond with subject of study, given that entry grades
vary between subject groups, subjects appeal to different types of people and subjects are not
evenly distributed across HE institutions. For example there was a high negative correlation
between low social class and participation in medicine and dentistry. The variables chosen for
the bespoke educational classification developed here includes a range of variables that are each
directly relevant to educational outcomes. The correlation matrix revealed some of these were
correlated, but the decision was made not to use variable weighting for the reasons discussed
above.

The k-means algorithm clusters the input data matrix into the k groups specified by the
researcher. Unless the number of groups that should emerge from the dataset is known a
priori, a method of selecting an appropriate cluster frequency is required. One method of
doing this has been demonstrated by Debenham (2001), and entails running the k-means
algorithm for multiple iterations of k and plotting the average distance between each data
point and its closest cluster centroid. Charts may be used to identify the homogeneity of each
solution for a range of cluster frequencies. In general, the higher the number of clusters, the
smaller the mean distances between each data point and its nearest cluster centroid. The charts
constructed by this method thus illustrate the trade-off between mean distance and classifi-
cation complexity.

Debenham (2001) conducts his analysis by running a single cluster analysis for each k
value. This has the disadvantage, described earlier, that the k-means algorithm is sensitive to
the location of initial seeds – a problem that can be largely circumvented through repeated
analysis using multiple initial seed values. Debenham (2001) selects a final k value based on
interpretation of apparent breakpoints in the plot of cluster homogeneity against number of
clusters. However, unless the cluster analysis routine is repeated multiple times, these obser-
vations may be anomalous because of inappropriately selection of initial random seeds. Thus,
although this method is useful in principle, it needs to be adapted in order to provide more
robust results.

The method adopted in this study builds on Debenham (2001) and runs the algorithm for
kn-2 models where n is the total number (176) of microgroups within the dataset. However, in
order to improve the confidence with which the trade off between cluster homogeneity the k
initial seeds were randomly repositioned 10,000 times. The median, minimum and maximum
distances were averaged over the 10,000 runs for each k value and are graphed in Figure 5.
In this Figure, the dark line represents the median and the whiskers the minimum and
maximum values.

Either side of the median trend line there is a large amount of variability between the most
(lower error bar) and least (upper error bar) homogenous solution for each k value. This makes
it likely that the step functions identified by Debenham (2001) arise because of a small number
of particularly good or poor models rather than success in identifying an appropriate cluster
frequency through induction. An alternative method is to use R-squared statistics that can be
calculated from the clustering output by regressing the cluster mean centroid from within the
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input data matrix against each variable in the input dataset.3 Using a similar presentation method
to the distance chart in Figure 5, the median, minimum and maximum R-squared scores are
presented for each k value in Figure 6. This graph shows that the R-squared statistic increases
with the number of clusters specified, although not in a linear fashion. Furthermore, as k
decreases so the variability of the R-squared statistic increases, providing further justification of
the need for multiple model runs to attain robust information, particularly at lower values of k.
The increased variability in R-squared at most of the lower k values is caused by the grouping
of the data points into a smaller number of clusters and this indicates a greater volatility in the
assignment of final case allocations between clusters, since this increases the variability of the
final classification performance.

3 Full details on the implementation of the k means algorithm in SAS can be found at: http://v8doc.sas.com/sashtml/
stat/chap27/.

Fig. 5. Average distances between cluster data points and closest cluster centroid (k = 2–174)

Fig. 6. Cluster performance measured by R-squared scores (k = 2–174)
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Furthermore, these results illustrate how further increases in k result in successively smaller
improvements in the R-squared statistic and how, at the crudest aggregations, much information
is lost. The R-squared plots are useful for selecting an appropriate cluster number for the dataset,
as the loss in performance of the classification can be assessed and compared for each reduction
in k.

Geodemographic classifications typically consist of a hierarchical series of aggregations.
This allows end users greater flexibility over the detail they can present and also the number of
groups into which their own data are divided. Having a classification with a small number of
large aggregations may be useful when profiling data from a small population, for example, an
unpopular course against all courses at a university. In this context, it is useful to consider the
numbers of clusters and levels suggested by a range of classification providers. These are
summarized in Table 5. With the exception of OAC, little justification is given as to why
particular levels of detail are chosen.

The commercial classification used most widely in HE since 2001 has been Mosaic™, with
its two hierarchical levels of 11 and 61 clusters. It was considered preferable to keep our bespoke
education classification in line with similar levels and cluster frequencies, in order not to confuse
potential end users with radically different aggregations. The final classification should be fit for
a range of purposes. Most importantly the classification should provide an effective way of
discriminating between those areas of high and low participation in aggregate, and also disag-
gregated by course types to allow more specific targeting strategies. As in commercial geode-
mographic classification, it is useful for a bespoke educational classification to have multiple
levels, since this creates flexibility when analysing target groups of different sizes. This classi-
fication will mainly be used to discriminate between 18–19 year olds as they form the majority
of HE cohorts, and so an HE classification should aim to have a relatively even distribution of
this age range between the final cluster assignments. The selection of variables was detailed
earlier, although it is also necessary to investigate the most appropriate value of k. Figure 6
shows that the average R-squared statistic does not show any discrete jumps in performance
following successive changes in the number of clusters, and thus that there is no optimum value
of k in terms of model parsimony. 10,000 separate cluster analyses were run for k = 50 through
k = 65. These values of k are in a similar range to the finest level of aggregation of the Mosaic™
2001 geodemographic product. The median, minimum and maximum R-squared results are
presented in Figure 7.

Each of these assignments of k appears to be successful in discriminating within the input
data matrix and, as demonstrated in the earlier exploratory analysis, the minimum and maximum
bars further illustrate the need to optimize each k allocation. The total 18–19 year old population
from the 2001 census were aggregated by k = 50 to k = 65 cluster models in order to ensure that
no outliers of this key target population had been created in the clustering process. The model
demonstrating the most even distribution of 18–19 year olds across the new clusters was k = 53

Table 5. Classification levels

Classification system Clusters in level 1
(<12 Clusters)

Clusters in level 2 (>=12,
<50 Clusters)

Clusters in level 3
(>50 Clusters)

Mosaic™ 2001 11 – 61
Cameo 10 – 58
ACORN 5 18 57
PRiZM – 16 60
Super profiles 10 40 160
OAC 7 21 52

Source: adapted from Vickers et al. (2005 p. 35).
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(see Figure 8) and as such was chosen as the final model. In practice, the distribution of 18–19
year olds is nevertheless strongly skewed. The solid line shown in Figure 9 at 1.88% divides the
principal applicant cohort equally between the 53 clusters (i.e., 100/53). Uneven distribution of
household and population counts is characteristic of most geodemographic classifications: in
the Mosaic™ classification, for example, the allocation of households to the 61 Mosaic™ types
ranges from 0.17%–3.82%.

Our educational classification is therefore defined as comprising of 53 clusters (henceforth
referred to as types). However, as discussed earlier, it is often useful to have a second tier in

Fig. 7. R-squared results from the 10,000 iterations of cluster analyses (the continuous dark line charts the median
R-squared value and the whiskers link minimum and maximum values)

Fig. 8. Distribution of 18–19 age cohort between geodemographic clusters (k = 53)
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a classification into which the types fit hierarchically (henceforth referred to as groups). The
Ward hierarchical clustering algorithm (Ward 1963) measures changes in variance or ‘infor-
mation loss’ and was used to aggregate the 53 types into groups. Information loss by this
merging procedure is defined by an error sum of squares criterion (ESS), which measures the
total sum of the squared deviation for all variables from each of the 53 types to the means of
the clusters to which they might be assigned. At each step in this process the algorithm
iterates through all possible unions for the 53 types, and at each pairing an assessment is
made to identify the increase in the ESS. The union that results in the smallest increase in
ESS is actioned, and the process continues through further iterations until all 53 types have
been progressively assimilated into a single cluster. The hierarchical organization of types into
groups can have multiple arrangements depending on the frequency of groups required. The
performance of these group classifications for predicting a target variable (e.g., participation)
will depend upon the level of correlation between the variables used in cluster analysis and
the target variable. Harris et al. (2005) suggest that group level classifications should ideally
have populations no lower than 4% and no greater than 20%, and should also contain between
two and seven constituent types. Using these guidelines the Ward method produced the clas-
sification shown in Figure 9.

5 An illustrative case study: Gospel Oak in North London

We illustrate how our bespoke classification discriminates between OAs, with respect to the
Gospel Oak area of North London that comprises a full range of neighbourhoods ranging from
the very affluent to the very deprived. A criticism of the standard OAC geodemographic
classification has been its performance within London, where large areas are assigned to the
umbrella ‘multicultural’ supergroup. These assignments apparently fail to discriminate the more
subtle characteristics of the people living within these areas, and for this reason, this issue
provides a useful test bed for our application specific classification. More important, however,

Fig. 9. Dendrogram showing derivation of clusters
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is the impact that the cocktail of standard census variables and even more refined measures of
affluence is likely to have upon attitudes towards human capital formation, choice of vocational
versus academic subjects, and so forth. The census, and indeed almost all commercial classifi-
cations, contain only legacy information about participation of past generations of students, and
is not differentiated according to institution or programme of study.

Figure 10 shows the distribution of the educational OAC group assignments by OA. Using
these data one can explore some of the patterns that have emerged in the classification for
North London. When the Gospel Oak ward is examined it can be seen that the output areas
to the north and south west are mainly categorized as belonging to group G, with the remain-
ing OA in Group I. These divisions seem to reflect the geographical distribution of affluence.
Measures of affluence are not included in the 2001 census and as such are not included
in the OAC classification, although they are in the commercial Experian Mosaic™
product (see Figure 11). Comparison of these figures suggests that one effect of introducing
additional variables which correlate with wealth and educational opportunity (Singleton
2007), such as educational performance and participation, is that we begin to highlight the
spatial variation in these dimensions which may be hidden in classifications utilizing only
census data.

In order to go one step further and examine the HE characteristics of these areas, the
educational group level classification was appended to UCAS acceptance data for 2002–2004 by
georeferencing the home unit postcodes of accepted applicants to the educational classification
at the output area scale. Index scores for educational groups were calculated using Equation (1)
for the following variables, where propensity refers to the extent that a target variable is
overrepresented within a group when compared to the total population:

Fig. 10. Educational OAC groups in North London
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• Propensity for course level participation.
• Propensity to attend a Russell Group4 institution

The index scores for the first of these variables are shown in Figures 12 and 13. The Joint
Academic Course Coding System (JACS) is a hierarchical classification of course types that has
been used by UCAS and HESA since 2002 to classify courses of study into a fine level of 1281
‘lines’ which aggregate up into 19 ‘groups’ (UCAS, 2007). Examining the groups present in
Gospel Oak, Figure 13 illustrates the variable propensity to participate across the range of JACS
course groups within educational OAC group G and Figure 14 shows the same data but for
group I. The data used to calculate these index scores are taken from the total population of
participants to single honours JACS courses during 2002–2004 as classified by UCAS accep-
tances. The course level participation rates differ markedly between these two groups, with
neighbourhoods belonging to group G showing a much higher propensity to supply medical
students, for example. Group G has an index score of 150 with respect to acceptances of places
at Russell Group institutions, whereas group I has a score of just 67.

The applicability of using index scores created from a national dataset to predict local
variation of behaviours between areas can be assessed by comparing the predicted rates one
would expect within an area against those that actually occur. The wards shown in Figure 11 and

4 The Russell Group is association of leading UK research-intensive Universities whose membership include:
University of Birmingham, University of Bristol, University of Cambridge, Cardiff University, University of Edinburgh,
University of Glasgow, Imperial College London, King’s College London, University of Leeds, University of Liverpool,
London School of Economics & Political Science, University of Manchester, Newcastle University, University of
Nottingham, Queen’s University Belfast, University of Oxford, University of Sheffield, University of Southampton,
University College London, University of Warwick.

Fig. 11. Experian Mosaic™ groups in North London

662 A.D. Singleton, P.A. Longley

Papers in Regional Science, Volume 88 Number 3 August 2009.



12 are all from within the London Borough of Camden. Within Camden during 2004 there were
a total of 969 people attending HE and studying single honours degree courses from within the
main JACS groups A–X, distributed across eleven educational OAC types.

Expected values of what one would expect if all students studying JACS courses were
distributed evenly across all educational OAC types can be devised by dividing the total
population within these groups by the total number of JACS group (19) – for example, type I46
is expected to have 12.74 students in Camden (=242/19). Differences between observed and
expected numbers of students can be calculated by taking the student average (expected value)
within each of the educational OAC groups and multiplying it by the index scores, namely, the
difference from the average (see Table 6).

Fig. 12. Propensity to accept HE places by course type in educational OAC group G

Fig. 13. Propensity to accept HE places by course type in educational OAC group I
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6 Concluding comments

The differentiation according to subject and HE institution type in our Camden case study
suggests that there is clear value in using bespoke geodemographic indicators to predict course
choice. A priori one would not expect these differences to be identified in such sharp relief by
discriminators based upon census variables alone, or upon data derived from the consumption of
goods and services. However, we suggest that this is only the starting point for the development
of geodemographic discriminators that are tuned to the requirements of public service providers.
This case study suggests that there are also externalities which are either not adequately
modelled by this classification, or that arise because of local variations which are missed by
using index scores based on a national datasets. The most obvious of these local variations
identified in this limited test is the systematic under prediction of ‘N: business and administra-
tion studies’ and almost all of ‘W: creative arts and design’ subjects across all educational OAC
types present in Camden. Local externalities which may have induced these errors could
include, for example, a local school/ college with specialisms in these subjects, or the existence
of prestigious local institutions with strong outreach links or sponsorship arrangements. In either
a revised classification or through the creation of locally weighted index scores, this technique
should prove very useful to a range of end users to model potential markets to target. An example
could be an HE institution wishing to target recruitment for a particular course in a selection of
schools with a known demographic.

Despite the inherent subjectivities that remain, we believe that this paper has demonstrated
a method by which bespoke classifications for a particular sector or application can be created

Table 6. Predicted minus observed scores

Course groups Short
code

E26 G39 G41 I44 I45 I46 I47 I48 I49 J53 G38

Medicine and dentistry A 0.2 1.0 -1.2 0.3 3.4 -5.1 1.2 0.8 0.5 0.2 1.1
Subjects allied to medicine B 0.2 -0.3 0.3 -2.8 -5.0 2.0 -4.5 0.9 -1.9 0.1 0.5
Biological sciences C 0.1 0.8 -4.4 -3.9 -6.4 -5.9 -7.6 -0.3 0.8 0.1 0.6
Veterinary science, agriculture

and related
D 0.1 0.6 3.6 0.2 0.3 4.9 0.8 0.3 0.4 0.0 0.6

Physical Sciences F 0.1 0.8 0.3 0.6 1.6 0.0 -2.0 0.4 1.0 0.1 -0.3
Mathematical and computer

science
G -0.9 -0.3 1.6 2.3 -0.8 -1.9 -8.0 0.2 1.1 0.2 0.6

Engineering H 0.1 0.8 2.7 2.2 2.2 6.6 5.2 0.9 1.1 0.1 -0.3
Technologies J 0.2 0.7 8.7 6.9 10.4 13.4 4.1 0.5 1.1 0.1 0.6
Architecture, building and

planning
K 0.1 -0.2 3.4 5.7 9.0 9.3 1.3 -0.3 1.3 0.1 -0.3

Social studies L -1.8 -2.1 -14.5 -2.6 -9.7 -6.1 1.0 -2.2 -1.3 -0.9 -4.2
Law M 0.1 -0.3 -0.9 1.7 1.6 -5.2 0.0 -0.1 0.8 -0.9 0.7
Business and administrative

studies
N 0.1 -1.3 -1.1 -5.8 -29.0 -17.8 -13.6 1.0 -8.5 0.2 -1.3

Mass communications and
documentation

P 0.2 0.8 3.8 -0.3 4.8 0.5 5.2 0.0 2.7 0.1 -0.4

Linguistics, classics and related Q 0.2 0.0 -0.7 -5.3 -1.8 -1.4 -1.3 -2.4 -0.2 0.1 0.7
European languages, literature

and related
R 0.2 0.2 10.9 3.8 3.4 6.1 2.8 0.3 0.1 0.1 0.9

Non-European languages and
related

T 0.2 0.9 9.9 6.7 2.6 10.6 1.5 0.5 1.4 0.1 0.9

History and philosophical studies V 0.2 0.0 -5.3 -3.5 -1.8 2.7 -5.4 0.4 0.1 0.1 0.8
Creative arts and design W 0.2 -2.2 -15.0 -14.8 -30.8 -30.1 -15.2 -3.2 -8.9 0.1 -0.4
Education X 0.1 0.6 3.0 1.4 4.2 4.7 3.8 -0.3 -0.6 0.1 0.4
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using pertinent public sector data sources. The motivation for this analysis lies in the observation
that typologies created by commercial classification providers supply no evidence to justify why
the inclusion of data relating to private consumption of goods is appropriate for predicting
public consumption. Furthermore, the exact nature of the weighting schemes and data used to
derive such commercial classification systems is closed to the public, which should be of
concern to public services that may apportion real life chances, rather than simply provide
consumer products and services. While other interesting research has sought to make commer-
cial geodemographic classifications relevant to public service provision (Ashby and Longley,
2005; Batey and Brown 2007), we believe that the addition of HE sector data is seen as a positive
step beyond the use of generic and re-labelled classification for purposes which they were not
originally designed. As such, this research presents a challenge to the implied assumption that
the nature of individual use of public services such as education should directly correspond with
the ways in which consumers use private goods and services. This work also responds to
concerns that the data inputs used to create generic commercial geodemographic classifications
come from disparate private sector and closed sources, that their provenance is often unknown,
and that the assumptions used to create such classifications cannot be scrutinized or tested by
end users. The negative potential social implications of using such classifications in areas of
public service provision should not be under-estimated, since they potentially impact signifi-
cantly upon the life chances of stakeholders in public services.

The methodology has shown how a classification built using the 2001 census can be refined
for a specific purpose through the augmentation of sector specific data. Through an illustrative
example of using the classification to predict course participation rates within a diverse ward in
London, it has demonstrated problems in using national index scores alongside geodemographic
groups to predict phenomena on a local scale. Future work is required to examine the causes of
such local variation and assess how they might be incorporated into the data model. Further-
more, should any model be disseminated amongst the wide range of potential end users (e.g.,
schools, universities, colleges, local education authorities), a method of creating both nationally
and regionally variable descriptive material to accompany the clusters should be devised to
allow for more accurate profiling relevant to local geographical area. The broader challenge to
regional science is to assimilate these rich descriptive indicators of revealed preferences for
courses and higher education institutions with systematic analysis of student flows to the
different HE institutions within the national (and indeed increasingly international) system
(Wilson 2000).
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Creación de geodemografía de código abierto: refinado de una
clasificación nacional de áreas de resultado de censos para
aplicaciones en educación superior

Alexander D. Singleton and Paul A. Longley

Resumen. Este artículo explora el uso de clasificaciones geodemográficas para investigar las
dimensiones sociales, económicas y espaciales de la participación en educación superior. La
educación es un servicio público que confiere beneficios tangibles y muy significativos a los
individuos que la reciben: como tal, argumentamos que entender la geodemografía de las
oportunidades educativas requiere una clasificación específica para cada aplicación que explote
fuentes de datos de educación infra utilizados. Desarrollamos una clasificación para el sector
de educación superior del Reino Unido, y la aplicamos al área de Gospel Oak de Londres.
Discutimos en general los méritos de aplicaciones sectoriales específicas de geodemografía y
citamos las ventajas de clasificaciones a medida para aplicaciones en la provisión de servicios
públicos.
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