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Abstract
Geodemographic classifications provide discrete indicators of the social, economic
and demographic characteristics of people living within small geographic areas.
They have hitherto been regarded as products, which are the final “best” outcome
that can be achieved using available data and algorithms. However, reduction in
computational cost, increased network bandwidths and increasingly accessible
spatial data infrastructures have together created the potential for the creation of
classifications in near real time within distributed online environments. Yet para-
mount to the creation of truly real time geodemographic classifications is the ability
for software to process and efficiency cluster large multidimensional spatial data-
bases within a timescale that is consistent with online user interaction. To this end,
this article evaluates the computational efficiency of a number of clustering algo-
rithms with a view to creating geodemographic classifications “on the fly” at a range
of different geographic scales.tgis_1197 283..298

1 Introduction

Geodemographics are small area classifications that provide summary indicators of the
social, economic and demographic characteristics of neighbourhoods. They continue a
lineage of socio-spatial differentiation in human geography and urban sociology which
extends over an 80 year period to formative work in urban ecology and social area
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analysis (see Batey and Brown 1995, Harris et al. 2005 for reviews and interpretations).
The term was first coined in the 1970s in work seeking to identify deprived inner city
areas (Webber 1975, Webber and Craig 1978). The success of these public sector
applications led to the commercialisation of geodemographics during the 1980s when the
approach became widely used in the private sector as a method of target marketing
(Birkin et al. 2002). More recently, public sector applications have moved somewhat to
the fore (Longley 2005), with applications in health (Farr and Evans 2005, Shelton et al.
2006), policing (Ashby and Longley 2005), education (Singleton and Longley 2009) and
local government (Longley and Singleton 2009).

The increasingly urbanized, complex and connected nature of human settlement is
driving a demand, in developed countries at least, for better contextual information to
inform decisions about the needs and preferences of people and the places in which they
live and work. Decennial censuses of population have in the past been appropriate for
this task, but the far-reaching and rapid changes that today characterise population
change are making it increasingly necessary to supplement census sources with data that
are more timely and relevant to particular applications. Better and more intelligent
integration of a wider range of available data sources can open new horizons for
depicting salient characteristics of populations and their behaviours. The art and science
of creating geodemographic classifications has always been about much more than
computational data reduction, and a key consideration in this quest is the availability of
decision support tools to present areal data from a range of attributes in a format that is
readily intelligible to the user. Thus, for example, in devising a local indicator of future
risk of obesity, it might be appropriate to use data sources that variously measure
demographic structure, school attainment, deprivation and existing health problems. In
assembling such sources together, the analyst should be made aware of issues of data
collection, normalisation, weighting and data reduction method.

Geodemographics typically classify neighbourhoods at two or more hierarchical
levels: for example, the five Categories that make up the top level of the commercial
ACORN classification (CACI Ltd, London) are divided into a total of 17 Groups at the
secondary level, and these 17 Groups are divided into a total of 56 Types at the lowest,
tertiary, level. The characteristics of each class within the typology are summarised by a
label (e.g. “City Living”), a verbal “pen portrait” and other descriptive material such as
photographs, montages and videos. These multimedia are used to give users of the
classification a clearer understanding of the characteristics of the underlying population.

The data used to create geodemographic classifications may derive from any of a
range of secondary data sources (Harris et al. 2005). Core to most classifications are
census data and some classifications (such as the UK Output Area Classification: Vickers
and Rees 2007) use no other source. Other data may be derived from behavioural or
attitudinal surveys (e.g. “lifestyle” surveys from commercial sources), financial data (e.g.
county court judgments, directorships) and property information (e.g. property tax
bands). The process of creating geodemographic classification has been regarded as a
computationally intensive activity, by which clustering algorithms are used to partition
the records of large multidimensional datasets into classes that exhibit strong within-
class homogeneity. The art and science of geodemographic classification is not without its
critics. Voas and Williamson (2001), for example, suggest that the GB Profiles and Super
Profiles classifications are based upon “clouds” rather than “clusters” of areas, and that
between cluster variation may be no greater than some within cluster variation. Partly
because they have been viewed as “high end” computational techniques, but partly also
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for reasons of commerce, data ownership and control, the creation of geodemographic
classifications has become the preserve of the expert. Most commercial systems use
closed methods and provide limited documentation of the detailed data inputs, the
precise clustering methods, or the weighting and normalisation procedures that are used.

In this article we present preliminary work that not only contributes to the creation
of more responsive and open geodemographic information systems, but also seeks to
question the authority implied by classifications that purport to present “best” solutions.
There are a number of motivations for this work. First, current classifications are created
from static data sources that do not necessarily reflect the dynamics of population change
in modern cities. Data are increasingly available at high temporal resolution and offer the
potential to be integrated with other traditional sources to create more timely systems.
For example, travel data recording the flow of commuters across a city network could be
used to estimate daytime population characteristics. A further example could be extract-
ing frequently updated patient registrations with doctors’ surgeries in order to provide a
more up-to-date picture of the residential composition of neighbourhoods. Second,
application specific classifications have been successfully demonstrated across a variety of
domains, and there are many more sectors that could potentially benefit if the methods
of construction and interpretation were more accessible and transparent. We argue here
that there is a need for web-based applications that enable the creation of general
purpose geodemographic classifications “on the fly”. In these applications, the specifi-
cation of (possibly real time) classification inputs should be guided to fulfil the objectives
of the problem under investigation, with output from such analysis computed within a
reasonable wait time. The exact specification of such a software tool lies outside of the
remit of this article; however, we aim to investigate here a core component of a future
system. A major problem is the speed at which the clustering algorithm can be used to
create robust partitions of datasets into homogeneous groups. Thus, this article presents
work on clustering efficiency, that ultimately is hoped will lead to the creation of online
tools that manage the estimation and testing of user-specified segmentations tailored for
specific purposes. As such, we believe that this is a first step towards a new method of
creating geodemographic classifications that fundamentally challenges the prevailing
view of segmentation produced by a limited number of expert producers.

2 Real Time Data Modelling and Bespoke Indicators

The task of creating real time geodemographics by integrating diverse and possibly
disparate spatial databases raises a number of computational challenges concerning data
normalisation and optimisation for fast transactions. This preliminary work assesses
three different clustering algorithms for their suitability for integration in an online
environment where efficiency of processing is a key priority.

The finest level in most geodemographic classifications is created using the k-means
algorithm which seeks to find the set of cluster centroids that minimises expression (1)
below.

V xj i

i

k

j

k

= −( )
==
∑∑ μ 2

11
(1)

where k is the number of clusters, and mi is the mean centroid of all the points xi in
cluster i.
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The k-means algorithm begins by randomly allocating a set of k seeds within the
data matrix and proceeds by allocating each data point to its nearest seed in multidi-
mensional space. A cluster centroid is then calculated for each cluster, and a new
partitioning of the data points is made around the new set of centroids. The centroids are
then recalculated for the new clusters of points, and the algorithm repeats these steps
until a convergence criterion is met (usually when switching of data points no longer
takes place between the clusters). Singleton and Longley (2009) have illustrated how the
resulting classifications are sensitive to the placement of the initial seeds, with conse-
quences for the performance of the cluster model. They suggest that, in order to optimise
a classification, a model is run multiple times in order to suggest an optimal convergence
solution based upon Equation (1). This process is computationally very inefficient, firstly
because each k-means takes time to compute, and secondly because the outcome of only
a single cluster analysis is saved. For classifications created offline this inefficiency is
acceptable, yet this is not necessarily the case where users are seeking an interactive
solution. An online tool thus requires results to be returned more quickly. For example,
if the input UK data for the Office for National Statistics Output Area Classification
(OAC: n = 41 variables) are clustered on a high specification computer (Intel® Xeon®
CPU 5150 @ 2.66 GHz, 3.00 GB of RAM) where k = 52, then the processing time for this
to converge is 4.23 seconds. Thus for this classification to run 10,000 times, a user can
expect to wait for 42,300 seconds (11.75 hours) to obtain results. Considerable work has
been undertaken to improve the efficiency of k-means. For example, Reynolds et al.
(2004) describe a new way of choosing the initial seeds, describing the algorithm as
“k-means++”. This method selects initial centres based on the density of data points and
improves the overall processing time because initial seeds are selected more intelligently,
thereby enabling data points to converge on clusters more quickly. A more radical
method of improving classification efficiency is to supplement k-means with other
modern classification procedures. Two such techniques include Partitioning Around
Medoids (PAM; Kaufman and Rousseeuw 1990) and clustering using genetic algorithms
(GA; Maulika and Bandyopadhyay 2000, Painho and Bação 2000).

The PAM procedure is represented in Equation 2. This algorithm attempts to assign
points from within a multidimensional data matrix into clusters based in their “near-
ness” to a series of randomly selected representer points. Unlike k-means, representer
points are actual data points from within the data matrix, rather than any point within
the Euclidean space. In PAM “nearness” is calculated using a pre-computed dissimilarity
matrix across all variables and data points within a data set. This offers improved
efficiency over k-means because it reduces the on-the-fly distance calculations, and
additionally is less sensitive to outliers – because positioning the centroid utilises a
median rather than the mean in the optimisation procedures. Effectively, this minimises
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where the variables are defined as in Equation (1). The pre-computation of a distance
matrix is memory intensive and PAM struggles when applied on large data sets. Thus,
Kaufman and Rousseeuw (1990) developed a sampling algorithm called Clustering Large
Applications (Clara). Clara draws multiple samples of the dataset, applies PAM on each
sample, and returns its best clustering as output. Because Clara applies PAM on samples
rather than on the whole dataset, it can cope with larger data volumes.
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Brunsdon (2006) and Fernández et al. (2005) demonstrated that GA can be com-
bined with PAM to offer further improvements in classification efficiency by supplement-
ing the initial random representor point selection with a genetic algorithm which
generates multiple possible sets of representor points. Genetic algorithms run repeated
analyses and works through a breeding procedure that preserves the characteristics of the
best data points for the subsequent generation. The subsequent generation is created by
mutation (change of a random position of the chromosome, i.e. change of a data point
in a cluster) and crossover (change of slices of chromosomes between parents, i.e. change
of slices of data points). After a number of generations, the genetic algorithm converges
on the optimal solution of the clustering problem. For this paper, an R-based genetic
algorithm was used varying values of number of generations to devise a clustering
solution, retaining a number of data items from one generation to another, and invoking
chance mutation.

3 A Comparison of Clustering Routines

This section develops a comparison between k-means, Clara, and genetic algorithms
(GA). Three metrics are compared: computation efficiency (time), classification optimi-
sation efficiency using average silhouette width, and computation efficiency using differ-
ent variable standardisation techniques. The aim of this analysis is to examine which type
of classification procedure would be most appropriate for computing real time geode-
mographic segmentations online. To compare k-means, Clara, and GA we used the input
data for the National Statistics Output Area Classification (Vickers and Rees 2007)
aggregated at three geographical levels (Output Area (OA), Lower Super Output Area
(LSOA), and Ward for the UK. We used an Intel® Xeon® CPU 5150 @ 2.66 GHz with
3.00 GB of RAM for these comparisons.

3.1 Measuring Clustering Efficiency Based on Computational Time

In order to measure computing time for each of the algorithms we ran k-means, Clara,
and GA for 1–100 cluster solutions at all of the three different geographic levels of the
OAC classification for UK, and then compared the CPU clock time (in seconds) for each
algorithm to converge on a specified number of clusters. Figures 1–3 show the relation-
ship between CPU clock time (in seconds) and the number of clusters (1–100) by using
k-means, Clara, and GA for the three different geographical levels. These algorithms
were run a single time for each value of k.

The figures show that for large numbers of data points (OA and LSOA levels) Clara
runs faster than k-means and GA given the number of clusters is a small number (<55 for
OA level and <30 for LSOA). However, when the number of clusters is a large number,
k-means runs faster than Clara. For a small number of data points (Ward), k-means runs
faster than Clara and GA. As noted earlier, the k means algorithm performance is
sensitive to the selection of initial seed points, and as such the actual computation time
for k means may have to be multiplied numerous times if a global optimal solution is
sought. Future work is required to examine how heuristics could be used to measure the
optimal number of clustering runs required to approximate an optimal solution.
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3.2 Measuring Clustering Efficiency Based on Average Silhouette Width

Kaufman and Rousseeuw (1990) introduced silhouette width as a plot showing which
data points lie within a cluster and which ones are between clusters. Width of a cluster
can be considered as a measure of a good or bad clustering outcome, and enables
multiple algorithms to be compared. A large silhouette width indicates a good clustering
solution and a small silhouette width indicates an average or bad clustering solution. An
average silhouette width is the average of all the silhouette width of different clusters in
a clustering problem. Reynolds et al. (2006) demonstrated how average silhouette width
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Figure 1 Comparing computational efficiency in an Output Area (OA) level data set
covering the UK
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Figure 2 Comparing computational efficiency in a Lower Super Output Area (LSOA)
level data set covering the UK
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(Kaufman and Rousseeuw 1990) could be implemented as a method of comparing
clustering efficiency. They present the following equation for silhouette width:

S k
x k y k

max x k y k
( ) =

( ) − ( )
( ) ( )( ),

(3)

where y(k) is the average distance of k from all other objects in the cluster Ck. For each
C � Ck average distance of k from the object C is given by d(k, C). x(k) is the smallest
result after computing d(k, C) for all clusters C � Ck. The mean of S(k) for all objects k,
is said to be the “average silhouette width” of that cluster solution. S(k) ranges between
1 for a good clustering solution and -1 which would be a bad clustering solution
(Reynolds et al. 2006).

In order to measure relative efficiency of the algorithm optimisation procedures, the
average silhouette widths were calculated for k-means, Clara, and GA for 1–100 cluster
solutions on the three different levels of geographies for UK. Figures 4–6 show the
relationship between average silhouette width and cluster frequency for k-means, Clara,
and GA on the three levels of geographic data for UK. These algorithms were each run
a single time for each value of k.

These charts show that for large numbers of data points, GA works better than
k-means and Clara. However, for small numbers of data points, Clara still gives better
results than k-means and GA.

3.3 Measuring Clustering Efficiency Based on Variable
Standardisation Techniques

An important aspect in the creation of every geodemographic classification is the selec-
tion of a standardisation technique that converts multiple input variables into measures
related on a single scale. In this section we measure the efficiency of clustering algorithms
when using three different variable standardisation techniques of: z-scores, range stan-
dardisation, and principal components analysis.
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Figure 3 Comparing computational efficiency for a Ward level data set covering the UK
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Z-scores provide one of the most widely used methods of variable standardisation.
If xi is the value of a variable for area i and xmean is the average value of the variable across
all n areas, then the z-score is defined as:

Z
x x

i
i mean

x

= −
σ

(4)

0

0.05

0.1

0.15

0.2

0.25

0.3

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

A
v
g

. 
s
il

h
o
u

e
tt

e
 w

id
th

No. of clusters

k-means

Clara

GA

Figure 4 Comparing classification optimisation efficiency in an Output Area (OA) level
data set covering the UK
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Figure 5 Comparing classification optimisation efficiency in a Lower Super Output Area
(LSOA) level data set covering the UK
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However, z-scores are vulnerable to outlier values within the dataset, and thus it has been
argued elsewhere (Vickers and Rees 2007) that transformed variables are not suitable for
analysis using k-means clustering algorithms. Given that k-means is also vulnerable to
outliers, a robust solution is likely only to be obtained after numerous re-runs of the
algorithm with different initial seed assignments. Additionally, seeds selected with initial
positioning influenced by outlier values will likely lead to increased run processing time
before meeting convergence criteria. As such, in an online environment where compu-
tational time is critical, z-scores may add to this computational burden. Vickers and Rees
(2007) uses a different variable standardisation technique called the range standardisa-
tion method. This method standardises the values of each variable within a 0 and 1
interval and as such limits potential for outlier values. For a variable (xi) the range
standardisation index for area i is given by:

R
x x

x x
i

i min

max min

= −
−

(5)

A final method that can be used to limit the potential effects of outlier values is principal
components analysis.

Each principal component represents a weighted combination of the original vari-
ables of the data set. The first component defines the dimension that accounts for the
most variation, and each subsequent component accounts for successively smaller
amounts of the remaining variation. However, it is important to remember that no
method offers a panacea for standardisation. Range standardisation effectively com-
presses the data into the range of 0–1, while principal components analysis arguably
places emphasis on those parts of the dataset that account for maximum variance. As
such, both of these variable standardisation techniques may omit some interesting
patterns within the dataset.
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Figure 6 Comparing classification optimisation efficiency in a Ward level data set cov-
ering the UK
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The debate over which standardisation procedure is most effective lies outside the
remit of this article, and to some extent is down to personal choice of the classification
builder. Thus, in the remainder of this section we aim to develop a comparison of the
computational run times of the three clustering algorithms against the number of stan-
dardisation methods.

In order to measure the computation time efficiency of the algorithms using z-scores
as a variable standardisation technique, we ran k-means, Clara, and GA for 1–100
cluster solutions again on the three different geographic levels for the UK, and then
compared the CPU clock time (in seconds) for each algorithm to converge on a specified
frequency of clusters (see Figures 7–9). As with the previous analysis, the algorithms were
run only a single time for each value of k.

These charts indicate that for a data set with high dimensionality (i.e. the OA and
LSOA levels) Clara runs faster than k-means and GA when the number of clusters is
small (<55 for OA level and <30 for LSOA). However, when the number of clusters is
large, k-means runs faster than Clara. For small numbers of data points (Ward level),
k-means runs faster than Clara and GA.

A repeat of the analysis was conducted with z-scores being supplemented for range
standardisation (see Figure 10–12).

The results are similar to z-scores and broadly show that again for large numbers
of data points (OA and LSOA level) Clara runs faster than k-means and GA when the
number of clusters is small (<44 for OA level and <40 for LSOA). Again, when the
number of clusters is increased, k-means runs faster than Clara. For smaller datasets
with lower dimensionality (e.g. Ward level), k-means runs faster than both Clara and
GA.

A final comparison was made using principal components as the standardisation
method. For the OA level data, principal components analysis was applied on the dataset
and 21 principal components were identified. These accounted for 90.69% of the
variance in the dataset. The three clustering algorithms were run on these components
and results are shown in Figure 13.
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Figure 7 Comparing computational efficiency using z-scores as the standardisation
technique for a UK Output Area (OA) level data set
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For LSOA level data, 16 principal components were created that accounted for
90.8% of variance within the dataset. The three clustering algorithms were then com-
puted on these components, the results of which are shown in Figure 14.

For the Ward level data, principal components analysis was used to identify 10
principal components that accounted for 91.11% of the variance in the dataset. The
three clustering algorithms were again run on these principal components, with the
results graphed in Figure 15.

Another similar result is returned by these analyses, again showing that for large
numbers of data points (OA and LSOA level) Clara runs faster than k-means and GA
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Figure 8 Comparing computational efficiency using z-scores as the standardisation
technique for a UK Lower Super Output Area (LSOA) level data set for the UK
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Figure 9 Comparing the computational efficiency using z-scores as the standardisation
technique for a UK Ward level data set
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when the number of clusters is small (<45 for OA level and <30 for LSOA). However,
when there are a larger number of clusters, k-means runs faster than Clara. For small
numbers of data points (Ward level), k-means runs faster than Clara and GA.

4 Conclusions and Directions for Future Research

A requirement for distributed and simple-to-use online classification tools arises from
changes in the supply of socio-economic data and the potential that this creates for end
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Figure 10 Comparing the computational efficiency when using range standardisation
as the standardisation technique for UK Output Area (OA) level data set
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Figure 11 Comparing the computational efficiency when using range standardisation
as the standardisation technique for a UK Lower Super Output Area (LSOA) level data set
for UK
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users to create new intelligence on socio-spatial structures. In addition to Census data
that are collected every 10 years in the United Kingdom, numerous supplementary data
sources are becoming available, some of which are already updated in near real time. The
availability of such resources will increase the potential to create more responsive and
application-specific geodemographic classifications that will make it less acceptable to
uncritically accept the outputs of general-purpose classifications as received wisdom. As
compared to the computational challenges posed in the past, real time computational
solutions in an online environment are becoming possible and we anticipate that this will
provide a stimulus to the development of real time application-specific geodemographic
classifications.
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Figure 12 Comparing the computational efficiency when using range standardisation
as the standardisation technique for a UK Ward level data set
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Figure 13 Comparing the computational efficiency using principal component analysis
as the standardisation technique for a UK Output Area (OA) level data set
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Based on the results of this article, we suggest that for the better partitioning of the
data (as measured by average silhouette width) GA works better for larger data sets, but
Clara is more appropriate for smaller data sets. For speed of computation, Clara works
better than GA and k-means for larger datasets where the number of clusters is small. For
larger data sets where a greater number of clusters is required, k-means runs faster than
Clara and GA. When examining how these different algorithms are affected by a choice
of different standardisation procedures there was little difference in computational times
between methods. For an online geodemographic classification system, these algorithms
and standardisation procedures could be chosen on the fly, based upon dataset size and
user inputs.
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Figure 14 Comparing the computational efficiency using principal component analysis
as the standardisation technique for a UK Lower Super Output Area (LSOA) level data set
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Figure 15 Comparing the computational efficiency of using principal component analy-
sis as the standardisation technique for a UK Ward level data set
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Before any substantive conclusions can be drawn from this research further testing
is required to compare other clustering techniques, and in particular those methods
which could be used to make k-means run faster on larger datasets – such as those
methods which optimise initialisation procedures and those methods which can use
parallel processing architectures for achieving enhanced computational performance of
k-means.
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