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Abstract

This year marks the 21st anniversary of the International GeoComputation Conference Series. To

celebrate the occasion, Environment and Planning B invited some members of the

geocomputational community to reflect on its achievements, some of the unrealised potential,

and to identify some of the on-going challenges.
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Introduction

2017 marks the 21st anniversary and homecoming of the International GeoComputation
Conference Series, started in Leeds in September 1996. The Nintendo 64 was released the
same year. Two decades later, that company’s most recent console is described as a hybrid,
merging the handheld and home gaming experiences. Geocomputation also is a hybrid,
fusing together the geographical and the computational. Has 21 years of development
created something original and innovative or is it an idiosyncratic outsider searching for
mainstream acceptance?

To celebrate the occasion and as part of Environment and Planning B’s refocusing on
urban analytics and city science – both areas of geographical and computational interest –
we invited eleven well-respected members of the geocomputational community to reflect on
some of its achievements, some of the unrealised potential, and some of the on-going
challenges in the age of ‘Big Data’.

What exactly is geocomputation if not an excessively syllabic portmanteau? As David
O’Sullivan observes (below), the geocomputation community has struggled to forge a
distinct answer and identity beyond ‘doing geography with computers’. In the fourth
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edition of the Dictionary of Human Geography (Johnston et al., 2000) it is described (by
Longley, 2000) as the creative and experimental application of geographic information
technologies in research that emphasises process over form, dynamics over statics, and
interaction over passive response. Its appearance in the Dictionary, just four years after
the first conference, suggests an early degree of academic credibility – of it doing
something geographical that is not only recognisable but distinctive.

To gauge the success of geocomputation, Mark Gahegan looks back to that first
conference, and to the first paper, recalling the eight challenges it presented. He notes
their common theme, ‘to compute our way to better analytic solutions to geographical
problems’. In this regard, we may regard geocomputation as prescient – an early response
to the rising tide of ever more powerful computing and to the deluge of data it washes upon
the shores of geographical interest because so much of those data are georeferenced. The
optimist may see in this the opportunity to reinvigorate the ambition of spatial science: to
further our understandings of spatial interactions and of spatial processes – time-space
geographies, for example, the interactions between people and places, between urban
forms and functions, about how cities evolve or ‘work’ as (chaotic) systems, or about how
people behave and make decisions in different spatial places and contexts, and under varying
social, economic and other constraints. And, it may do so in a way that lets the data do the
talking through the brute force of computing; or, at least, in a way that is as much interested
in exploring data geographically – searching for spatial variation, looking for localised
departures from a general trend, finding something new, unexplained and spatially
clustered – as it is about trying to ‘prove’ (in a statistical or classically econometric sense)
more generalised ‘laws’ and theories.

However, rising tides deposit rubbish. As both Paul Longley and Lex Comber are aware,
the freedom of geocomputation needs to be balanced against producing practical and usable
findings that have at least some anchoring in theory, testable propositions and realistic
representations of the observable geographic world. In addition, users should be suitably
critical of what the data have and have not measured, and of the results they generate. The
well-worn maxim of garbage in, garbage out still applies. However, data deluge need not
lead to data junk if suitable checks and balances are in place, including what Chris Brunsdon
advocates as reproducible research. The suite of localised and geographically weighted
statistics outlined by Martin Charlton epitomise the coupling of the geo and the
computational, grounded within a statistical framework to search for and not ignore the
geographical patterning of a variable across a map. At a minimum, such methods provide a
diagnostic tool to check the assumption of independence that infuse most statistical
methods, including regression. But more than that, they challenge the whole idea of
‘averaging away’ spatial differences and so on the not unreasonable basis that those
differences, and the processes that caused them, ought to be of geographical interest.

If a goal of geocomputation is indeed to model social and economic processes, then on
face value agent based models tick all the right boxes as they use data, computation,
simulation, rules and randomisation to explores the links between theory, processes and
geographical outcomes. Nick Malleson is hopeful that with the sorts of data collected
under the rubric of smart cities, geocomputation has the potential to create reliable
forecasts of urban dynamics. Alison Heppenstall is more questioning of the current state
of play and its ability to model how real-world individuals really behave.

Therein lies the challenge. To quote Alison, ‘how can we use new forms of data to
understand how real people shape and are shaped by geographical processes?’ Phrased
more broadly, how does all this computational power and all these data get us beyond
measuring spatially differentiated outcomes to understanding better the processes that
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created those outcomes in the first place? How do we validate what we think we know about
those processes and on what basis do we develop or discount existing theories? How does
geocomputation engage with and contribute to the best of quantitative social science? And
how do we do this in a way that has a wider impact, not locked away in the ivory towers of
academia but engaging with commercial partners and teaching students the geocomputation
skills they need to contribute to what Alex Singleton and Daniel Arribas-Bel call Geographic
Data Science?

Looking back, it is clear that geocomputation has inspired a lot of computational and
methodological innovation. Nevertheless, 21 is a coming of age. Apparently, the Switch is
the fastest-selling console in Nintendo history. Can geocomputation also shape something
distinctive in an era of knowing more yet understanding less (Lynch, 2016)? Andy Evans is
optimistic. If it holds to what he describes as the core principles of rigor, sympathy, and
imagination, geocomputation will continue to inspire, innovate and evolve, and there will be
plenty more celebrations ahead.

Richard Harris
School of Geographical Sciences, University of Bristol

What geocomputation is For: Doing Geography with computers

The geocomputation community has struggled to define itself clearly, and often is perceived
as a quirky offshoot of geographical information science (GISci). However, self-consciously
emerging in 1996 at the inaugural Leeds conference, a few years after Goodchild’s (1992)
calling into existence of GISci, it was clearly intended not to be GISci. Gahegan (1999)
forcefully distances geocomputation from the ‘disabling’ technology GIS, which has itself
distanced quantitative geographers from geographical questions:

Geocomputation is a conscious attempt to move the research agenda back to geographical
analysis, with or without GIS in tow [...] It is about not compromising the geography, nor
enforcing the use of unhelpful or simplistic representations. (p. 204)

It is difficult to argue plausibly that this goal has been achieved. Yet I am more optimistic
now that it might be achieved, than I have been for some time.

Gahegan’s pithy argument bears revisiting. In essence, he suggests that GIS has been a
‘Disabling Technology’ (1999, p. 203), because ‘GIS saw to it that geographers became the
slaves of the computer, having to adopt the impoverished representational and analysis
capabilities that GIS provided’. Of course, there are advantages to adopting shrink-
wrapped computer solutions, among them ‘getting some sleep and producing much
prettier output’ although anyone who has attempted to bend an obstinate GIS package to
their will, might quibble with even this modest claim.

More substantively, a side-effect of the widespread adoption of GIS in government,
business, education and beyond, has been the actualisation of early GIS-boosters’ dubious
(at the time) claim that 80 per cent of all data has a spatial component. The source of this
often-cited boast is unclear. The earliest I have managed to trace it is to a conference paper
by Antenucci (1989) but the context makes clear that it was by then already a commonplace
assertion. Chrisman (pers. comm.) suggests it was routinely made to persuade doubting local
government purchasing officers of the wisdom of investing in then untested GIS software
with uncertain utility. In any case, 80% seems a likely underestimate now looked at 30 or 40
years later. Data today are routinely encoded with a spatial reference at the moment of
collection, be it an address or GPS coordinates, and if not can be readily associated with a
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spatial location in a matter of minutes. This is thanks to the astonishing success and
widespread adoption of GIS and more recently web-mapping and related technologies.

Nevertheless, the ‘simplistic representations’ which Gahegan bemoans remain. For the
most part, the geography associated with data is encoded as a point, or a polygon. Together
with other points or polygons these are assembled in spatial layers. Notwithstanding the
many operations that contemporary GIS software can perform on and between spatial layers
– which the web developer community at the time of writing is assiduously reinventing – the
limits of points, polygons (and also grids) as representations of geography are apparent.
Geographers, as a rule, are more interested in the (spatial) relations among things than in the
things in themselves and in how processes play out at multiple scales. How do spatial
relations affect how things change over time, and how do those relations change over
time and across scales as a result?

Such geographical concerns lay at the heart of geography’s quantitative revolution of the
1960s and persisted into the 1970s (see Forer, 1978, for example). It was only as the initial
hope of incorporating space into statistical tools proved trickier than expected (Gould,
1970), and the hoped-for one-to-one correspondence between processes and the patterns
they produce proved a mirage (Olsson, 1969) that the confidence (hubris?) of quantifiers
waned. Meanwhile geography embraced other epistemologies, and some of the creative
energy of would-be quantifiers was directed into building mainstream GIS and its
accompanying infrastructure of data models, ontologies, algorithms and routinised
analytical approaches.

Somewhat in the shadow of these developments we have seen the emergence of more
open-ended, platform and data-model agnostic tools for the analysis of geographic data (see
Brunsdon and Singleton, 2014). This alternative geospatial ecosystem now seems ready for
widespread adoption by geographers, without the same commitment to particular
approaches to representation that GIS demands and subtly enforces. Geocomputation
seems an apt label for this polyglot assortment of approaches. After all, as Couclelis
(1998) noted, if it weren’t for the happy accident of the pronounceability of ‘geo’ as a
prefix, we’d likely call it ‘geographical computation’. And what else would a geographer
with a computer be interested in?

David O’Sullivan
Department of Geography, University of California, Berkeley

Geocomputation’s 21 year report card: B-, some good progress, but

could try harder

Geocomputation began in earnest with the conference at Leeds University in 1996 and
rapidly became established as a vibrant research community (papers from the first
gathering and all subsequent meetings are available at www.geocomputation.org). In the
very first paper describing this new field, Openshaw and Abrahart (1996) defined a series of
eight challenges that, for them, defined the direction (here paraphrased for brevity):

(1) improving the resolution and precision of computational models;
(2) computationally intensive statistical methods such as jack knifing and bootstrapping or

the use of Monte Carlo significance tests in place of heavily assumption dependent
classical alternatives;

(3) improved optimisation methods that can use stochastic search or evolution strategies;
(4) unsupervised learning methods to replace simplified statistical tools;
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(5) improving supervised computational models by removing simplifying assumptions, via
neural methods;

(6) adding more geographical knowledge into a problem (for example by using fuzzy logic);
(7) tools for data mining, pattern recognition and cluster detection, including artificial life

methods, that can search large data spaces;
(8) application of new search techniques from machine vision.

Of these, the first three aim to leverage improvements in computational speed and
scientific computing to offer more accurate, more scalable analysis, or the use of
previously intractable statistical methods. The remainder aim to leverage what were
recently pioneered techniques in machine learning and artificial intelligence (AI). The
common theme linking these challenges is the desire to compute our way to better
analytic solutions to geographical problems, by continuously improving methods and
leveraging Moore’s Law. Geocomputation is an apt name for such a field.

How far have we got with this original agenda? Let’s look at the high computing
challenges first. At the beginnings of geocomputation, there was significant interest in
high performance computing and GIS (e.g. Armstrong, 1995; Healey et al., 1997). At the
time (1996), many universities had access to gigaFLOPS computing platforms – that is 109

floating-point operations per second, and the world’s fastest computer could manage around
1 teraFLOPS (1012 operations/sec). Access to this kind of computing power opened
possibilities for many research communities in terms of new analysis methods and scaling
up longstanding problems such as global climate and ocean circulation modelling.

Two decades on and many single CPUs can now sustain over 1 teraFLOPS; some
researchers have access to petaFLOPS (1015) machines. I doubt there is an analytical
question currently posed in geography that would need more compute power than that of
the world’s fastest computer (around 100 petaFLOPS). But the problem is not raw power, it
is scaling up our algorithms so that they can take advantage of such platforms via
parallelisation and optimisation. In this regard, geocomputation has achieved very little in
the last twenty years: the re-expression of spatial algorithms and data structures onto
established HPC templates (Asanovic et al., 2006) has proceeded intermittently with little
concerted effort, a notable exception being the work to parallelise the GRASS open-source
GIS (Akhter et al., 2010). However, there has been a late resurgence of interest in this topic,
in large part due to the overlap of goals with CyberGIS and related cloud computing
initiatives (e.g. Satish, 2015; Shi et al., 2013; Stojanovic and Stojanovic, 2013).

Turning to machine learning and AI, the report card is better. Machine learning techniques
such as neural networks, decision trees, genetic algorithms and artificial life have received a
steady stream of interest. Papers experimenting with their application in spatial analysis,
remote sensing, and ecology appear quite regularly in the literature (e.g. Fischer, 2006;
Gahegan, 2000; Pijanowski et al., 2002; Wiley et al, 2003). More recently, the focus of such
papers has moved from explaining and justifying these new methods to getting the best out of
them and demonstrating how much better they are than simple statistical approaches
(Pradhan, 2013; Rogan et al., 2008). Related interest in geographic knowledge discovery
(Miller and Jiawei, 2009) has also helped to further this part of the geocomputation agenda.

Despite their clear improvements in predictive power, machine learning methods remain
notably absent from commercial GIS and remote sensing software. The challenge in moving
them towards mainstream adoption is twofold: machine learning methods usually require
experimentation with various configuration and learning parameters to get the best out of
them, which makes them difficult and time-consuming to use, especially for non-experts; (ii)
the statistical models that machine learning challenges are often simpler to apply, more
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stable (results do not vary due to search heuristics) and the error or goodness of fit is
computable. However, the first of the challenge may already have been overcome. Deep
learning methods – often based on hierarchies of neural networks – are proving to be
effective at many learning tasks, as they essentially remove or streamline much of the
difficult setup and experimentation phase; essentially this too is solved by the network as
part of its learning process (Schmidhuber, 2015; Yann et al, 2015).

Moving from machine learning to the reasoning and automating aspects of AI, the
progress is slower. A review of the possibilities is provided by Wu and Silva (2010) and
some of the practical benefits and challenges are discussed by Malerba et al. (2003).

On reflection, I believe the biggest contribution that geocomputation has made in the last
twenty years is to encourage a generation of scholars to experiment with new computational
methods and with their application to geographical problems. Given that geographers do
not always have a strong background in computer science, some of these methods can be
challenging to understand and difficult to apply. It is immensely rewarding to see that so
many researchers have tried, succeeded, and made geographical analysis and modelling
richer and more powerful as a result.

Mark Gahegan
Centre for eResearch and Department of Computer Science, The University of Auckland, New
Zealand.

Geocomputation: A geographically weighted success story

In the early 1980s, there was interest in the association of cancer ‘clusters’ with supposed
sources of radiation contamination. The media also was concerned with possible
contamination arising from the nuclear waste reprocessing plant at Sellafield on the
Cumbrian coast. The Black Advisory Committee (Black, 1984) concluded that the
Sellafield plant was not connected with raised levels of leukaemia in Cumbria, but
recommended re-analysis of local cancer registries. Stan Openshaw and colleagues at
Newcastle University undertook the analysis, leading to his seminal paper (Openshaw
et al., 1987) which appeared in the first volume of the fledgling International Journal of
Geographical Information Systems.

Existing approaches had identified a source of radiation in the electromagnetic spectrum
to determine whether the rate of morbidity around it was somehow higher than some
national level. My recollection is that electricity substations were regarded as suspicious,
as were electricity powerlines. But could the sources include telephone boxes or fish and chip
shops? The underlying issue was that no-one knew what the linkage might be.

Stan inverted the problem and decided that if he could determine where the excesses were
centred, this might lead to more fruitful line of enquiry. Thus a whole-map statistic that
suggested evidence of clustering was replaced by a local statistic that suggested where that
clustering was located. The implementation led to a range of computational and statistical
challenges but those do not diminish the importance of Openshaw et al. (1987) and
subsequent papers.

That was 30 years ago. We can see other stimuli to geographically-minded approaches. In
the early 1970s, Casetti (1972) had conceived of regression parameters that might exhibit
heterogeneity; his ideas were subsequently extended by John Paul Jones III (Jones and
Casetti, 1992). Wilpen Gorr had experimented with parameter ‘drift’ in regression models
at around the same time (Gorr and Olligschlaeger, 1994), and Luc Anselin had looked at
both modelling spatial structure and local statistics, in particular local indicators of spatial
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association (Anselin, 1995). Rogerson (1999) developed a local chi-square statistic to
examine evidence for disease clustering in New York.

Work at Newcastle University in the early 1990s lead to the first paper on geographically
weighted regression (Brunsdon et al., 1996). A subsequent book by the same authors
(Fotheringham et al., 2002) consolidated their previous work and presented new material.
A paper on GWR was also presented at the first geocomputation meeting at the University
of Leeds. However, an early issue was software. We forget that Openshaw’s GAM code was
written for the IBM and Amdahl computers at Newcastle University running a unique
operating system developed at the University of Michigan. In the mid-1980s rapid data
exchange involved a 12 inch diameter reel of magnetic tape and a courier service.
Embryonic FORTRAN code for GWR was made available for potential users to
download. Windows software for GWR was later available at cost from Newcastle
University following the Fotheringham et al. (2002) book launch. A more advanced
Windows application has been available in the last few years.

The award of a Strategic Research Centre to the National University of IrelandMaynooth
by Science Foundation Ireland provided an opportunity to develop the geographical
weighting approach. The major output was a package of open source code for the R
system: GWmodel (Gollini et al., 2015; Lu et al., 2014). This extends the previous
developments considerably, and includes functions for univariate and bivariate analysis,
generalised linear models, ridge regression, discriminant analysis and principal component
analysis. Criticism of the susceptibility of GWR to collinearity among the predictor variables
has been addressed by the development of locally compensated ridge regression (Gollini et al.,
2015). The package also includes functions to allow the use of different distance metrics in the
geographical weighting, including network distances and the Minkowski metrics.

Chris Brunsdon has observed that the Pearson correlation coefficient can be unpicked as a
LISA. If the two variables x and y have been mean centred, then the values:

ri ¼
xiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

j¼1 x
2
j

PN
j¼1 y

2
j

q

are the individual components that sum to the value of r. These can be plotted on a map to
show which locations contribute the most, or least, to the value of the correlation coefficient.
Such an approach complements the geographically weighted correlation functions in
GWmodel. Recent work includes the development of geographically weighted
correspondence matrices (Comber et al., 2017). GWR appears as a tool in the Spatial
Statistics toolbox of ESRI’s ArcGIS software, and for users of Quantum GIS, it is
available in the SAGA freeware that installs alongside QGIS. There are versions in other
packages (including spgwr and gwrr).

At the time of writing (early 2017) the search string geographically weighted regression
returns 79,600 hits in Google. It’s a fitting tribute to a public health scare, a mainframe
‘super computer’ and a visionary academic.

Martin Charlton
National Centre for Geocomputation, National University of Ireland Maynooth

Geocomputational Musings on Big Data

There is a great deal excitement across many scientific communities about the new
opportunities afforded by Big Data. For the geocomputation community, the potential
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lies in Big Spatial Data, and the opportunities to harness the increasing number of open data
initiatives, new forms of data generated by citizens, the near ubiquitous capture of location,
and the near permanent connectivity via web-enabled devices that allow data to be shared
and uploaded.

Classically research is undertaken in the following way:

(1) Formulate a research question.
(2) Identify what data to collect and how to collect it.
(3) Perform some statistical tests to determine whether any effects or associations arise due

to random sampling errors.
(4) Get an answer to the question.

Big data turns experimental design and its associated inferential theory on its head:

(1) Collect lots of data about anything.
(2) Perform some kind of data mining.
(3) Get some kind of answer.
(4) Decide what question it was an answer to.

A common theme is to allow the data to do their own talking, with the potential for data
mining and machine learning to identify important but hidden associations of social or
scientific interest:

Scouring databases and other data stores for insight is often compared to the proverbial search
for a needle in a haystack, but... big data turns that idea on its head . . . [and quoting Viktor

Mayer-Schönberger] ‘‘With big data, we don’t know what the needle is. We can let the data
speak and use it to generate really intriguing questions’’. (Needle, 2015)

The idea is attractive but also empirically and theoretically naive. If research questions are
not specified in at least some sense in advance, then the results of data mining risk being
answers to arbitrary questions. If the aim is to find a needle in a haystack then making the
haystack bigger does not make the job any easier, and if we don’t know what kind of needle
we are looking for, it helps even less. In the shadows of the Big Data paradigm is a need to
revisit classic tools for statistical inference (Brunsdon, 2016). This is because of the ease with
which spurious, nonsensical relationships and correlations between variables can be inferred
through data mining, and because of the lack of rigorous statistical methods for analysing
very large datasets, where statistical ‘significance’ is meaningless.

Paul Mather and Stan Openshaw summarised these concerns in a prescient way in 1974.
Reflecting on the potential to analyse population census data using computers they
suggested:

It might be far more profitable to postulate a certain pattern of factor loadings (and inter-factor
correlations) and attempt to find how far the hypothesis fits the data that has been collected. This

attitude should help prevent the mindless approach in which numbers of variables characterized
only by the fact that they are all easily culled from census volumes or derived from two or three
basic variables, are picked over like cans on a rubbish tip. (Mather and Openshaw, 1974: 290,

emphasis added)

Geocomputation can play an important role in addressing these concerns. The process of
big data analysis should be a process of investigation driven and supported by some sort of
theoretical underpinning. Where these are absent, then analyses should proceed with
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reflective cycles of investigation and explanation, rather than simply data mining and
hypothesis testing – it should be explorative detective work perhaps aided by
visualisation. The importance of exploratory analyses cannot be overstated: they support
the iterative development of theoretical constructs as the basis for analysis and to develop
robust and reproducible big data analyses by looking for patterns (geographical and
otherwise) through repeated experiment. For example, in the absence of theory this could
be by randomly sampling the big data, identifying patterns, applying to other samples or to
the whole dataset, and then engaging with domain experts to anchor the results in a
theoretical framework for the study.

In short, geocomputational analysis should be grounded in some idea of what questions
are important. The reflexive process described above supports that identification. Big Data
analyses should include a reflexive cycle of investigation and explanation, rather than data
mining, repeat testing (exploring rather than fishing) and it should support the iterative
development of theoretical constructs as the basis for analysis. Until we act in this way
Big Data analyses will not help us to answer the Big Questions we currently have, nor
identify new Big Questions deep in the Big Data.

Lex Comber
School of Geography, University of Leeds

Big Data, geocomputation and geography

Unlike some other areas of computer intensive programming, geocomputation has fallen
somewhat short in delivering transparent models with practical, usable findings. This is
perhaps disappointing in contrast to (a) the obvious application success in embodying
core principles of spatial organisation in geographic information systems and (b) the vast
streams of spatially and temporally referenced data that have become available in many
applications areas.

In computational terms, it seems likely that this is because the geo-temporal frame that
are subject to analysis are unbounded. ‘Geographic’ is commonly taken to imply scales from
the architectural to the global and work presented at the very first geocomputation
conference in 1996 illustrated that issues of scale and recursion opened up a seemingly
infinite range of ways of framing representation of the world – in terms not only of form
and process, but also statics and dynamics. Any representation of how the world looks and
how it works is therefore necessarily partial, incomplete and, in temporal terms at least,
open-ended. Contrast this with the closed system computational problems of, say,
translating natural languages (where the system is bounded by finite dictionaries of words
and grammatical structures), and it is perhaps unsurprising that the achievements of
geocomputation are more muted. Piecemeal and partial models achieve piecemeal and
partial outcomes and there is some inevitability that this will be the case.

The ‘geo-’ prefix differs from its ‘spatial’ counterpart not just in the range of scales that it
may describe, but also in its implied association with the unique place of the surface and near
surface of Planet Earth. This fundamental distinction may have underpinned some of the
‘GIS wars’ between Openshaw and Taylor, and others in the 1990s (Openshaw, 1991;
Schuurman, 2000) – analysis of the canals of Mars may meet the scale range criterion but
does not fulfil the place criterion and as such, sensu stricto, does not qualify as geographic
analysis. This distinction highlights that geography as a discipline brings tacit knowledge to
understanding of places that are fundamentally unique accretions of the outcomes of past
human and social processes. Representations of place need to provide an effective base for
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geocomputational analysis of the general effects of current and future geocomputational
processes. This is because geographic objects of analysis are not simply locations in space
but the accumulated outcomes of systems of networks and flows (see Batty, 2013).

Understanding what ‘place’ is or at least how it can be effectively represented presents
daunting application specific challenges. Clear conceptions of the nature of the geographic
data are required, yet there must be some concern that geocomputation has acceded to wider
tendencies in Big Data analysis to disregard the provenance and quality of the huge volume
and variety of data that are available today. A generation ago students of social and
environmental science were, it seems, much better versed in widely accepted scientific
principles of research design, as well as the statistical apparatus of generalisation. This is
not to say that there are never instances where the availability of billions of data points and
ever greater data content cannot be a substitute for some vagaries of geographic coverage –
sometimes there is a trade-off between the largely unknown biases of unconventional data
but the spatial and temporal precisions that they can bring. But precision is not the same as
accuracy, and representations of the world need to be accurate it they are not to prove
biased, partial and potentially delusional.

How might geocomputation better respond to the challenges of a world which is data rich
but in which new forms of data do not provide anything that might be described as spatial data
infrastructure? A first way is to better use what we know from conventional data sources that
may be less detailed or up-to-date but which are of known provenance in terms of content and
coverage. Machine-learning methods, for example, must be guided by clearly defined
populations of interest. Geographical heuristics may be used to achieve the same ends. The
richness and variety of Big Data make it possible to ground many more assumptions at highly
disaggregate scales and, suitably triangulated with conventional framework data sources,
draw inferences that are both robust and open to scrutiny. Current research using
consumer data, which account for an increasing real share of all of the data collected about
citizens, provides one relevant application area in this context (for examples, see cdrc.ac.uk).

Paul Longley

Department of Geography, University College London

Reproducible research, quantitative geography and geocomputation

A large proportion of practical quantitative work in geography relies on the analysis of data
or on the running of simulation models. That analysis, and the results it generates, are the
outcome of a process involving data verification, re-formatting, computer programming,
modelling, data analysis and visualisation. Many publications are created to share the
results and to discuss their implications. It follows that the validity of the publications,
and of future publications citing them depends on the validity of the initial work and on
the analytical process. However, although the publication itself is widely available (in many
current situations it is open access), details of the supporting activities – in particular, the
data collected, the software code used and the exact stages of analysis – are often not
available, or at least not easily traceable.

The term reproducible research (Claerbout, 1992) is used to describe an approach which
may be used to address this problem, and allow code and data to be easily accessed.
Although not widely adopted in quantitative geography at the time of writing (but see
Brunsdon and Singleton, 2015) it has gained attention in a number of applied fields where
quantitative data analysis is used, exemplified here by statistics (Buckheit and Donoho, 1995;
Gentleman and Temple Lang, 2004), econometrics (Koenker, 1996) and signal processing

Harris et al. 607



(Barni et al., 2007). The ultimate goal of reproducible research is that complete details of any
reported results and the computation used to obtain them should be freely available, so that
others following the same procedures and using the same data can obtain identical results.
This approach is offered, for example, when using Rmarkdown, where data analysis code
written in the R statistical programming language is incorporated into a text document. On
viewing, the code is run and the output (either textual or graphical) is substituted into the
document. Distributing documents in this way, together with sufficient information to access
the data analysed facilitates an open and reproducible approach to data analysis and
visualisation.

A strong case can be made for a focus on this topic in quantitative geography,
geocomputation and spatial science. The practice allows others to scrutinise not only the
data used as the basis for an analysis, but also the approach to the analysis itself, creating a
platform for greater scrutiny and accountability. A large amount of work involving the
analysis of geospatial data influences policy in many fields – health, climate change and
crime prevention are a small but significant set of examples.

The key justification of a reproducible approach is precisely that: it can be reproduced
and validated by others. However, there are additional benefits. Reproducible analyses can
be compared: different approaches addressing the same hypothesis can be compared on the
same data set, to assess the robustness of any conclusions drawn. Also, methods used are
portable: code can be obtained from documents, allowing others to learn from other people,
to apply the code to other data sets and to adapt the code for related problems. Finally,
results may be updated in situations where updated versions of data are published (for
example new census data) and methods applied to the original data may be re-applied.

Thus there are several arguments for reproducibility in quantitative analysis of spatial
data – not just for academics, and not just for the geocomputationally minded, but also for
public agencies and private consultancies charged with analysing data that may influence
policy. Recent work (Vandewalle et al., 2009) has shown that papers in a number of fields
adopting reproducible approaches have higher impact and visibility.

Achieving reproducibility like this is clearly within reach in some situations, although
there are also some challenges ahead, as the diversity, frequency and volume of
geographically information increases. Even in situations where personal or sensitive
information is analysed it could be argued that there are advantages to having ‘domains
of reproducibility’ – that is, groups of people who are permitted to access this information
adopting reproducible practices amongst themselves – so that internal scrutiny, and
updating of analyses becomes easier. Adopting reproducibility calls for some changes in
the practice of both analysts, in adopting reproducible practices, and learning new skills,
and publishers, who in support of this would need to provide resources where reproducible
document formats may be submitted, handled, distributed and viewed by a wide audience.
Such changes are already taking place in other disciplines – for example in the journal
Biostatistics – so why not in the field of geocomputation?

Chris Brunsdon
National Centre for Geocomputation, National University of Ireland Maynooth

Big Data, agent-based modelling, and smart cities:
A triumvirate to rival Rome

Following the Big Data revolution (Mayer-Schönberger and Cukier, 2013), aspects of
peoples’ lives that have never before been documented are being captured and analysed

608 Environment and Planning B: Urban Analytics and City Science 44(4)



through our use of smart-phone applications, social media contributions (Croitoru et al.,
2013; Malleson and Andresen, 2015), public transport smart cards (Batty et al., 2013),
mobile telephone activity (Diao et al., 2016), debit card transactions, web browsing
history, and so forth. Taken together, and supplemented with knowledge about the
physical environment (air quality, temperature, noise, etc.), pedestrian footfall or vehicle
counters (Bond and Kanaan, 2015), these data provide a wealth of current information
about the world, especially cities. This ‘data deluge’ (Kitchin, 2013) has spawned interest
in ‘smart cities’; a term that refers to cities that ‘are increasingly composed of and monitored
by pervasive and ubiquitous computing’ (Kitchin, 2014a, 2014b).

One aspect to smart cities, largely absent in the published literature, is the ability to
forecast as well as to react. Whilst most initiatives inject real-time data, these data rarely
are used to make real-time predictions about the future. Where ‘forecasting’ is an
advertised capability of a smart city initiative, rarely is it explained in any detail. This
might be due to the proprietary nature of many initiatives but it is equally likely that a
lack of appropriate methods is at fault. Although ‘black box’ AI methods are progressing
rapidly, there is little evidence that these are being used to forecast future states of
smart cities.

Perhaps agent-based modelling (ABM) offers the missing component for predictive smart
cities? Agent-based models simulate the behaviour of the individual components that drive
system behaviour, so are ideally suited to modelling cities. A drawback with ABMs is that
they require high-resolution, individual-level data to allow reliable calibration and
validation, and traditionally these have been hard to come by. However, in the age of the
smart city, this no longer is the case. Furthermore, ABMs are not ‘black boxes’; the
individual agents are imbued with behavioural frameworks that are (usually) based on
sound behavioural theories. This makes it easier to dissect the models, as well as allowing
a controller to manipulate the behaviour of the agents as required for a particular forecast.
In addition, because many ‘big’ data sources are available in real time, there is the
opportunity to calibrate models as soon as new data become available. This is akin to
forecasting in fields such as meteorology, where the latest weather data are assimilated
into running models to improve short-term predictions. This triumvirate of big data,
ABM, and dynamic calibration has the potential to become the de facto tool for
understanding and modelling urban systems.

There are, however, substantial methodological challenges that must be met, including
developing the means to assimilate the data into models. Furthermore, engagement with
smart devices is not heterogeneous across the population, so there is a risk that those
individuals who choose not to use ‘smart’ technology will be forgotten about in
simulations and planning processes. Simulations that are based on biased data have the
potential to increase biases by presenting biased results that are then used to influence
policy. For example, PredPol is an extremely popular predictive policing tool that is being
purchased by police forces across the globe in order to predict where future crimes are going
to take place. However, policing data are biased towards particular minorities as a result of
where most policing activity already takes place, so the tool has the potential to increase
those biases by sending more officers to areas that are already being heavily policed (Lum
and Isaac, 2016). Any smart city modelling/forecasting tool must be able to mitigate against
these risks.

To conclude, although smart city initiatives are numerous, very few can evidence an
ability to create reliable forecasts of future city states. However, advances in spatial
methods that fall under the umbrella of ‘geocomputation’ have the potential to create
reliable forecasts of urban dynamics under a variety of conditions. There are ethical issues
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that must be considered but, if conducted safely, the triumvirate of ABM, big data, and
dynamic calibration is extremely attractive.

Nick Malleson
School of Geography, University of Leeds

ABM and geocomputation: A thinly disguised rant

One of the significant changes in the area of geocomputation over the past 20 years has been
a shift in focus from top-down aggregate models to individual bottom-up approaches. This
has been accompanied by an increased recognition of the role that the individual plays in
driving key social processes that form a significant part of geographical systems (Batty, 2013;
O’Sullivan et al., 2012). Whilst the acknowledgement that individuals are important
components of these systems is not new in itself, the ability to chart the consequences of
individual decisions and behaviours on geographical systems is. These new insights have
been made possible through the development of new individual-based modelling
methodologies enriched through the proliferation of micro-level population and
economic data.

An individual-based method that has seen great uptake by researchers within
geocomputation over the past 20 years is ABM (Macal, 2016). ABM advocates an
understanding of social and spatial phenomena through simulation at the individual level.
By creating heterogeneous individuals who can interact with other individuals and the
environment, we can track the emergence of new patterns or trends across a variety of
spatial and temporal scales. The emphasis within these models on the individual makes
ABM a natural framework to apply within social and geographical systems as evidenced
through the dazzling array of applications that are continually appearing, ranging from
disaster relief (Crooks and Wise, 2013) to social epidemiology (El-Sayed et al., 2012). This
popularity has been cemented by increases in computer processing power, data storage,
developments in computer programming languages and easily accessible frameworks that
enable rapid development of models with minimal programming experience.

While ABM offers a potentially powerful way both to simulate and to understand
geographical systems, there remain several important challenges that researchers in ABM,
and geocomputation more broadly, need to address. Firstly, creating an ABM that can
simulate the processes occurring in the real system requires the behaviours and actions of
individuals, as well as environmental influences to be captured and represented. Current
practice is lacking with the majority of ‘behavioural’ frameworks sharing more commonality
with mathematics and econometrics than psychology. A more explicit link between ABM
and behavioural frameworks is needed if we are to capture the complexity around decision-
making and chart their consequences. Secondly, capturing this level of complexity requires a
vast amount of individual-level data covering ‘softer’ factors such as feelings and opinions,
data that more traditional quantitative research (and spatial science) has ignored. While the
appearance of big data has opened up new avenues of research allowing highly complex
models to be constructed that are enriched by new insights and understanding, how we
extract value and make sense of these new forms of data presents a considerable challenge.

A final, and possibly the biggest challenge that ABM faces is that of calibration and
validation. Creating realistic individual-based models requires a significant amount of
data with a corresponding amount required to confidently calibrate and validate. As
Heppenstall et al. (2016) note, there is some irony that by pursuing the disaggregation of
data to the individual it becomes near impossible (at present) to rigorously calibrate and
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validate such models. However, even if the data were available, appropriate methods have
not yet been established nor developed for measuring and analysing individual agents that
are part of a large dynamic and non-linear system (Batty and Torrens, 2005; Torrens, 2010).
This absence of robust calibration and validation measures has precipitated the criticism of
ABMs as ‘toy models’. Until researchers can fully evaluate these models against real world
systems, it is unlikely that they will make the transition from academia into policy-making.

What is clear is that researchers now have the data and tools at their disposal to examine
geographical systems in unprecedented individual-level detail thus creating new knowledge
and understanding about how these systems evolved and what the consequences of future
individual behaviours are likely to be. The challenge for geocomputation is twofold: how can
we use new forms of data to understand how real people shape and are shaped by
geographical processes; and how can we realistically simulate these processes within our
models?

Alison Heppenstall

School of Geography, University of Leeds

Breaking-out of the ivory tower

Over the past five years, a growth in geocomputational research has taken place away from
academia, with many innovative new developments driven primarily by the commercial
sector. In part this is their response to the opportunities arising through the emergence of
big (geo)data in industry. These new forms of data challenge much of the pre-existing
storage and processing infrastructure established at a time where contemporary ‘big data’
did not exist. Unlike the traditional tasks of a database where a schema would be pre-defined
and known, many applications exploring complex data sets require more flexible and
adaptive technologies, and platforms such as Hadoop have been optimised for these
purposes. There has been additional innovation from disciplines such as computer science
around methods that use parallel optimisation, AI, and supervised or unsupervised learning
to translate data into useful insight. These methods may present a new epistemological
approach within social science research (Kitchin, 2014a, 2014b) that challenges the
frameworks of classical statistical inference long established.

Academia has been slow to keep pace and has not developed mechanisms that provide
effective bidirectional dissemination of expertise and knowledge with industrial partners.
This is regrettable because the potential benefits are not negligible. Beyond the pragmatic
needs for innovation within the contemporary data economy, academia should be trying to
engage more intensively with research activities of industry; conversely, industry should not
underestimate the advantages of partnering with universities. Within the UK, the ESRC
funded Consumer Data Research Centre (www.cdrc.ac.uk) makes an important step
towards opening-up commercial data to academic users through secure data access facilities.

There has been significant growth in data science employment in roles requiring students
who are geographically trained. For academia, this provides a significant constraint in
attracting the most talented researchers and teachers (Rey, 2009). Although a challenge,
the academic sector needs to do more to sell the benefits of research roles that include greater
autonomy, more control over the destination and ownership of the outputs (including code),
and the opportunity to work collaboratively across institutions without the shackles of
protecting commercial interest. We take the view that academia needs to assume a more
serious role as an incubator for innovation, where the knowledge, products and expertise
developed as part of research activities can better be captured and have their exploitation
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supported in a way that generates a financial benefit to the researcher or teams involved. At
the same time, academic institutions need to think carefully about how intellectual property
generated by staff is captured and how these benefits may be shared, as well as how potential
negative effects such as a reduction of open source development or reduced collaboration
could be mitigated.

An increased interaction between industry and academia would make the latter more
relevant to the former, and the former more useful and accessible to the latter, both to
their mutual gain. We argue that the academic geocomputation community needs to
engage more fully with some of the most recent developments in the nascent field of Data
Science. As others have argued elsewhere, this conversation can be strengthened through
training and education. A more targeted delivery of core geocomputation concepts and
methods in the context of the Data Science world would demonstrate the value of
incorporating space and geographical context into cases where geography is relevant to
the (data) question at hand. A close inspection of some of the main textbooks (EMC,
2015; Peng and Matsui, 2015; Pierson et al., 2015; Schutt and O’Neil, 2013) and courses
(Franklin, 2014; Irizarry and Hicks, 2016, John Hopkins University, 2016) on Data Science
reveals there is a growing body of elements that remain remarkably consistent across all of
them. This ‘basic curriculum’ of Data Science broadly is composed of the following three
areas: computational tools/software engineering, statistical methods, supervised and
unsupervised machine learning, and data visualisation. In all of these, there is little to no
mention of explicitly spatial methods or wider considerations concerning their applications.
At best, what we find are some examples of elementary mapping.

To address this deficiency, we propose a curriculum of what we term GDS. The main
elements that we believe could extend Data Science into an explicitly spatial domain are the
following: spatial databases and file formats (e.g. GeoJSON, PostGIS); Exploratory Spatial
Data Analysis (ESDA), in particular local measures; geodemographic analysis and
regionalisation techniques; spatial econometrics and geographically weighted regression;
point pattern analysis; and cartography. These are not typical of a standard
undergraduate method course in the social sciences yet they represent the sorts of
techniques that need to be learned if future academics are to have the skillsets that are
needed to engage with geocomputation within and beyond our ivory towers.

Alex Singleton and Daniel Arribas-Bel
Department of Geography and Planning, University of Liverpool

Geocomputation: Conclusions, in way of catching breath

Looking over the abstracts from the first GeoComputation conference, two things leap out:
the ahead-of-the-curve methodologies (machine learning; networks; web GIS; ABM; data-
mining) and the breadth of applications areas. Geocomputation has been somewhat the
victim of its own foresight in both: there are now tens of conferences in these methods
and computational application areas. Nevertheless, one joy of the series is still being
exposed to that breadth of techniques, both new and from other application areas.

Moreover, as Gahegan notes, the idea of geocomputation has proven even more
important. Globally, staff, courses, and institutions are labelled geocomputational, or feel
part of the subject. The raison d’etre of the series was to create a space for computation when
quantitative geography was struggling against the ‘cultural turn’ in geography. In many
ways, its most important legacy is to allow people to hold their heads up and say ‘look,
others elsewhere do this stuff; we should invest’.
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Nevertheless, in a world that has finally caught up, and where analysis and
visualisation of spatial data are everywhere, it behoves us to ask ‘what now’ for
geocomputation?

First, there are issues to address. Our community gender balance is still poor and the
traditional Anglo-American-Antipodean focus of the conferences is looking increasingly
outdated. On teaching, Singleton and Arribas-Bel highlight the opportunity for clarifying
geocomputation’s unique-selling-points; we equally need to aim earlier, convincing
children that coding is about more than making millions from an app and can be used
to aid society. Finally, we need to manage our burgeoning knowledge (>1,350,000
academic papers p.a.; Björk et al., 2009; many useful to geocompers). Brunsdon
highlights Open Source data and techniques, and we should consider knowledge
management to avoid re-creation and to identify which new and old techniques are
useful, as well as their pitfalls.

More positive are our potential contributions to ongoing efforts in core areas. Industry,
Singleton and Arribas-Bel note, is now investing in geocomputation far more than academia
but we can still bring three things to the table. Firstly, rigor: we understand how analysis
works in ways easily forgotten outside academia; those three spatial data daemons – the
Modifiable Areal Unit Problem, Spatial Autocorrelation, and the Ecological Fallacy – still
catch-out the naı̈ve, as, in modelling, do Equifinality and Error Propagation. Secondly,
sympathy: current solutions are driven by those with a narrow understanding of the
world. Geocomputationalists are uniquely trained in the technical skills needed, but also a
nuanced understanding of global systems. Thirdly, our breadth brings imagination: free from
traditional subject boundaries, we can make unusual links and identify interesting
opportunities.

Finally, we need to detail the future, as 21 years ago, and get at it, considering where
spatially sensitive computing can make the world a safer, sustainable, and more satisfying
place. Questions surround data understanding and use: Comber highlights re-negotiation of
significance in a Big Data world, while Malleson notes the potential for dynamic data (and
we might note for global social modelling); both demand thought on the social, political,
and analytical uses of data. Beck, in 1987, appositely noted the important question is not
how we predict the future using present parameters, but how we pick those needed to
make it a better one. We also need to think more about how we track and display error
and uncertainty associated with dynamic systems. As Heppenstall requests, human
experience needs centring in our work: advances are waiting in capturing the emotional
and belief-centred relationships between society and space. We also need to help develop a
new politics of public duty and support in a world led increasingly by individual-level data
and algorithms. As Longley notes, space and place are still key, but need updating with
work on shared virtual and augmented realities, and their crossovers with the internet of
things and telepresences. There’s work needed on the emergent features of interconnected
human systems – parallel economies and the influence of new and old media most urgently
– but there’s deep potential in understanding, visualising, and embedding the human
experience as a node in a complex of interconnected flows. In AI, interactions with bots
in complex social spaces, online and off, need elucidating, and geocomputation has a role
to play in moving from machine learning to reasoning, as we attach structures and
metaphors about the world to recognised objects. Finally, we have a place in
sustainability: from resource optimisation to modelling planetary evolution
and terraforming. In each area: human dynamics; experiences; uses of space; and
interactions with the environment, we need those core principles: rigor, sympathy, and
imagination, which promise insight and innovation in an exciting world of opportunities.
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If the last 21 years has seen the world catching up with us, the next 21 years should, with a
fair wind and a strong heart, see us carry the world onwards.

Andy Evans
International Geocomputation Conference Series Steering Group
University of Leeds
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