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established in the 1970s (Webber, 1978), 
although a wider review and interpretation 
would extend right back to the ‘human 
ecology’ studies from the Chicago School of 
Sociology in the 1920s (Burgess, 1925), social 
area analysis in the 1950s (Shevky and Bell, 
1955) and the factorial ecologies of the 1970s 
(Janson, 1980). Although that geodemo-
graphics has evolved considerably over the 
years (Singleton and Spielman, 2013), its 
conceptual background is still wedded to the 
principle that people tend to align themselves 
with the behaviour and aspirations of the 
local communities in which they live. The 
inferential nature of the aggregations rely on 
the notion of societal homophily, or in other 
words, that ‘birds of a feather flock together’ 
(Harris et al., 2005). As such, people who live 
close by (e.g. in the same neighbourhood) 
are more likely to have commonalities in 
attributes and behaviours than a randomly 
selected group of people. 

Although geodemographic frameworks can 

Geodemographics is a fi eld of quantitative 
geography that engages in the analysis and 
classifi cation of populations into discrete 
classes based on socioeconomic and built en-
vironment characteristics of small-area geo-
graphy. Simply put, geodemographics is 
the ‘analysis of people by where they live’ 
(Sleight, 1997, p. 16). Such classifi cations have 
demonstrated utility over a range of public 
and private sector applications (Longley, 2005; 
Longley and Goodchild, 2008; Reibel, 2011; 
Singleton and Spielman, 2013). A geodemo-
graphic analysis is essentially a data reduction 
methodology that aggregates populations, so 
that correlations between sub-populations can 
be drawn on with ease. It involves the process 
of producing key statistics of a particular 
area, on the basis of the characteristics of its 
residents and their contexts.

Geodemographic applications were initially 
developed as a strategy to analyse and system-
atically document socio-spatial segregation. 
The associated data reduction methods were 
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environment characteristics, for instance hous-
ing type and population densities. For classi-
fication systems that have been developed en-
tirely from census variables, such as the pub-
licly open ONS (Office of National Statistics) 
Output Area Classification (OAC) for 2011, 
attributes such as density can, however, be 
misleading; the arbitrary nature of the geo-
graphic extents of the administrative areas for 
which population measurements are offered 
renders comparisons between the physical 
features ineffective. Other proprietary geodemo-
graphic classifications, such as Mosaic by Ex-
perian (Nottingham, UK) and Acorn by CACI 
(London, UK) include some measures of rela-
tive location (CACI, 2013; Experian, 2014). 
However, to what precisely these attributes 
pertain, how they are used in the clustering 
process and the weight they are assigned 
in the final classification remains obscure, 
because of the commercial sensitivities that 
are inherent in ‘black box’ commercial solu-
tions (Singleton and Longley, 2009).

In this paper, we test whether specific 
and multidimensional urban morphologies 
systematically correspond with socioeconomic 
characteristics at the neighbourhood level. In 
order to identify and analyse such attribute 
patterns, we adopt a geodemographic ap-
proach, which involves the creation of a classi-
fication for a national extent, based on cluster-
ing at the small area level. In essence, we try 
to identify the physical and built environment 
characteristics that might be used to supple-
ment neighbourhood typologies.

Open Data Inputs

This research captures a variety of physical 
att ributes collected for a small-area geography, 
and in order to enhance reproducibility, repli-
cation and extension these inputs are assembled 
from Open Data sources (Singleton et al., 2016). 
We produce a classifi cation at the 2011 UK 
Census Output Area level for the 181,408 
Output Areas (OAs) that make up England 
and Wales. One of the main providers of geo-
graphical data for England and Wales is the 

capture a wide set of input attributes, current 
classification systems typically include little 
to no input of explicitly spatial attributes 
regarding the built and physical attributes of 
neighbourhoods. There is, however, an abun-
dance of variables that might be collected 
on the built forms and relative locations that 
underpin neighbourhood differentiation. For 
instance, proximity to certain amenities is im-
portant to residential decisions such as trans-
port nodes, parks, retail and healthcare-
facilities. There has, for example, been exten-
sive research into the topic of analysing relation-
ships between accessibility and urban develop-
ment patterns, (e.g. land use-transportation 
interaction (LUTI) models); and connectivity 
has been advanced as a key feature in shap-
ing urban residential dynamics and socio-
spatial segregation (Dear, 2002). Research on 
residential decisions has also attracted a lot of 
attention over the years, particularly through 
hedonic modelling. While most of the rele-
vant research focuses on the importance of 
work location (Van Ommeren et al., 1999; 
Renkow and Hoover, 2000), there is strong evi-
dence that certain demographic groups favour 
some relative locations over others, and that 
the nature and configuration of the local built 
environment and land-use characteristics are 
also relevant (Hui et al., 2007). For instance, 
individuals with children often favour green 
space and recreational opportunities nearby, 
while those without children prefer smaller 
residences that offer closer proximity to cen-
tral services (Colwell et al., 2002). Other 
characteristics may impact the area as un-
favourable due to negative externalities, such 
as high-speed roads or railway tracks within 
the vicinity of the neighbourhood (Parkes 
et al., 2002). It is unclear exactly how such 
characteristics impact upon residential decisions 
as there are many synergies involved across 
lifecycles (Kim et al., 2005). For instance, mod-
erate proximity (200 m to 300 m) to a green 
space may mitigate negative effects of noise 
pollution (Gidlof-Gunnarsson and Ohrstrom, 
2007).

Some census variables reflect limited built 



BIG DATA AND THE CITY

384 BUILT  ENVIRONMENT   VOL  42   NO  3

deemed of utility. These included data about 
listed buildings and historic parks and gardens 
supplied by the Historic England Archive (https://
services.historicengland.org.uk/NMRData
Download/) which is regularly updated 
(November 2015 update used here) and also 
under Open Data License. For Wales, the cor-
responding provider is the Cadw heritage 
organization (available through the UK data 
Service, https://data.gov.uk/dataset/listed-buil
dings-in-wales-gis-point-dataset), although the 
data are slightly outdated (September 2011). 
Commercial buildings for local retail centres 
were identified using data from the Local 
Data Company, an Open version of which is 
available through the ESRC Consumer Data 
Retail Centre. Finally, we included aggregated 
data on housing type from the 2011 Census 
supplied by the Office for National Statistics 
(ONS). Unfortunately, there are currently no 
Open Data available on building age or height.

Table 1 summarizes the range of inputs 

national mapping agency Ordnance Survey 
(OS), and there are many datasets available 
within their repository, with varying degrees 
of granularity, depending on whether they 
are publicly accessible or available for pur-
chase. As this paper focuses on Open Data 
sources, we use OS Open Map – Local, the 
most recent and detailed open OS vector 
data product currently available (Ordnance 
Survey, 2015). However, within diff erent con-
texts, such data might also be supplemented 
by other national mapping agency data, or 
alternative sources such as OpenStreetMap 
(www.openstreetmap.org). The OS vector 
data product provides a variety of informa-
tion including outlines of buildings, street 
network with hierarchy, railways, woodland 
areas, surface water and important functional 
sites. 

While the OS Open Map – Local provides 
the main source of this data, there were a 
few other sources within England and Wales 

Table 1. Description of the spatial dataset compiled for England and Wales.
Variable Name Variable Description

D1: OA Boundaries 181,408 Output Area boundaries, as defi ned by the 2011 Census. All other data were spatially 
 joined with the respective OAs that they fall  into (data features were split when falling into more 
 than one OA).
D1: Buildings 12,878,666 Building objects represented as polygons. Note that these areas do not represent 
 individual households. 
D2: Road Network  Road network is represented as line segments, approximate to the road centre. The categories 
 include ‘Motorway’, ‘Primary Road’, ‘A Road’, ‘B Road’, ‘Minor Road’, ‘Pedestrianized Street’, 
 ‘Local Street’ and ‘Private Road Publicly Accessible’, as well as their ‘Collapsed Dual 
 Carriageway’ counterparts.
D3: Woodland  Areas of trees represented as polygons, described as coniferous and non-coniferous. 
D4: Functional Sites/ 120,677 Building polygons that can be found within functional sites. They are categorized
Important Buildings  into themes such as Air Transport, Education, Medical Care, Road Transport and Water 
 Transport, which are further classifi ed into numerous more discrete classes.
D5: Railway Stations  Railway tracks and tunnels represented as lines (in this instance we used tracks only in the 
and Tracks analysis) and Railway Stations defi ned as points.
D6: Surface water Polygons of surface water. Small rivers and streams are represented as lines and were not 
 included in the dataset. The dataset was also supplemented with ‘seawater’, derived from the 
 country’s coastline.
D7: Registered  406,496 listed historic buildings defi ned as points, which were geolocated.
Historic Buildings
D8: Registered Parks  2,007 Polygon features with extents of the parks / gardens, classifi ed as I, II*, or II, from most
and Gardens to least important. For Wales, the 372 sites were identifi ed from points from a ‘Named Places’
 dataset and given an approximate 200 m radius.
D9: Retail Centres 1,312 Retail Centres across England and Wales. There is no recent update for this dataset 
 which dates back to 2004. The centres are only depicted as points and have no typology att ached. 
 We assumed an average radius of 200 m to convert them to areas. 
D10: Housing Type  Percentage of households that are classifi ed by the Census as Detached, Semi-detached, Terraced 
 or Flat.
D11: Population Population of total persons per OA.

http://www.openstreetmap.org).TheOSvector
http://www.openstreetmap.org).TheOSvector
http://www.openstreetmap.org).TheOSvector
http://www.openstreetmap.org).TheOSvector
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was made by the Department for Com-
munities and Local Government in 2005, 
within the framework of the ONS Neighbour-
hood Statistics, described as Land Use Statistics. 
The dataset was described as a generalized 
land-use database aggregated into OAs. The 
dataset contained estimates of built environ-
ment attributes, such as roads, paths, domestic 
and non-domestic buildings, domestic gardens, 
water, rail etc. Despite the fact that the pro-
prietary OS Enhanced Basemap was used 
to create this resource, ONS classified it as 
experimental, as there were issues of accuracy, 
mainly arising because only the centroids of 
features were taken into account in class assign-
ments of aggregations.

To facilitate these methodological short-
comings, we adopted three different types of 
attribute measures for each OA that related 
to either two types of proximity measures 
including adjacency effects or intermediate effects; 
and additionally direct measures. The last of 
these are simply attributes captured at the OA 
level, while the first two assume buildings 
as the initial unit of analysis which are then 
later assigned to OAs. Building polygon 

used to derive measures featured in this 
analysis.

The classification presented later was created 
for Output Areas (LSOAs), and as such the 
input measures were assembled for this geo-
graphy. These zones offer advantage over 
other administrative units in England and 
Wales since many other socioeconomic classi-
fications are offered at the OA level, such as 
the 2011 ONS Output Area Classification, 
thus making comparisons possible. Addition-
ally, such geography also allows the incor-
poration of Census data which is distributed 
for these units. However, for the range of 
the derived measures that are described in 
the remainder of this section, there are prob-
lems with this approach. OA borders were 
designed to maximize within zone homo-
geneity in population characteristics (popula-
tion normalization), without regard to the 
geographical features of the area (Martin et 
al., 2001; see figure 1). As such, for proximity 
based inputs there were challenges about 
how such measures might be calculated, and 
to which area they should be attributed. 

A similar attempt to create such a dataset 

Figure 1. Maps looking at the un-generalized Output Area borders (black lines) around Sefton Park, 
Liverpool. Left: Notice how the area of the park is divided arbitrarily between proximal OAs (crosshatched 
pattern). Right: Output Area borders usually coincide with the street network, making simple street 
network-to-area assignments impracticable.
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and these effects may vary in scale. For 
example, when considering the location of a 
residential property, being adjacent to a very 
major road might be perceived as having a 
negative impact, given the noise/pollution 
associated with increased traffic volumes, 
whereas being near, but not adjacent to a busy 
road might be perceived as advantageous, 
given the enhanced connectivity this might 
facilitate.

We defined adjacency effects to features 
measured within 100 m linear distance, as 
commonly used in the literature on negative 
externality effects of built environment features, 
such as noise or pollution from roads (Rijn-
ders et al., 2001). For intermediate effects a dis-
tance of 600 m was used, on the basis of 
various Western international definitions of 
‘within walking distance’. The distance figure 
generally varies depending on the context of 
analysis, but distances between 300 m and 
900 m are considered appropriate for urban 

features serve as observations in this input 
dataset, and represent homogenous built-up 
areas which can include one or more house-
holds. A graphical representation of the model 
is described in figure 2. All the attributes 
collated as input across all domains are sum-
marized in table 2.

For both types of proximity measure, we 
used a series of spatial queries that identified 
buildings that fulfil certain criteria, for in-
stance, which buildings are within a set dis-
tance of a major street? The buildings that 
met each criterion were then assigned to OA 
aggregations with weights determined by their 
attributed area. Thus, within each OA, a ratio 
of the area of buildings meeting the criteria 
relative to the total built areas was calculated 
for each of the attributes considered in the 
analysis. The necessity to differentiate between 
adjacency and intermediate proximity effects 
follows the logic that not all built environ-
ment characteristics have the same effect, 

Figure 2. The spatial data model used to process data and produce Output Area inputs to the classification.
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processed into regional datasets which were 
then computed separately using the R pro-
gramming language. 

Finally, there were two further types of 
direct measures: those which were derived 
from geographic features, and those which 
were simple inputs from secondary data. 
The derived direct measures included listed 
buildings and culs-de-sac (dangling segments 
in the road network). The latter of these was 
defined geocomputationally as the end of a 
line segment that did not intersect with any 
other such segment. A sensitivity of 10 m was 
applied to this criterion in order to avoid top-
ological errors and intermittent street seg-
ments. The results show that such measures 
can capture specific urban morphologies even 
at the small-area level as we show in figure 3.

For the other non-derived direct measures, 
the variables were simply aggregated directly 
at the OA level, such as the housing type. 
Population density was calculated using a 

features (Hui et al., 2007; Barbosa et al., 2007; 
Villeneuve et al., 2012; Vale, 2015).

Beyond these distances we assume there 
are no adjacency or intermediate effects. 
The delineation of adjacency effects or inter-
mediate effects brings additional practical con-
siderations which relate to the overall den-
sity of the built environment features being 
considered. In common with practice when 
creating inputs to multidimensional classifica-
tions, preference should be for those attri-
butes which, in addition to theoretical rationale, 
also provide useful differentiation between 
areas (Spielman and Singleton, 2015). For 
example, in this application, when 600 m buf-
fers were used for major roads, this resulted 
in more than 50 per cent of buildings meet-
ing this criterion, thus providing a weak differ-
entiation. These tasks were computationally 
expensive, as the complete dataset contains 
more than 12.8 million observations (building 
polygons). Thus the database was pre-

Figure 3. Left: Attribute of cul-de-sac ratio per OA at Kingston-upon-Hull, Yorkshire. Right: The ratio of 
listed (registered) buildings per OA area in Liverpool.
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et al. (2005); however, here we use only built 
environment data to create the typology. A 
common clustering technique used in geodemo-
graphic analyses is the iterative allocation – 
reallocation algorithm, known as k-means. 
Although this algorithm has been used in a 
variety of geodemographic applications, our 
dataset is sparsely populated, and k-means 
is known not to respond well to the non-
Gaussian distributions that characterize such 
datasets (Everitt  et al., 2011). 

ratio of persons per total building area, which 
potentially would give more accurate results 
regarding housing conditions. The final OA 
attributes along with their descriptions are 
provided in table 2. 

A Multidimensional Classifi cation 
of the Built Environment

Methodologically, our cluster analysis follows 
a conventional approach as detailed in Harris 

Table 2. Built environment attributes used in the classification.
Variables  Variable Description, Aggregated per OA Code

Adjacent eff ects
1. Major Roads Percentage of the area of buildings that the centroid is within 100 m of a major road to the total 
 building area. We defi ned major as those of type ‘Motorway’, ‘A Road’ and ‘Primary Road’. 
2. Arterial Roads Percentage of the area of buildings that their centroid is within 100 m of an arterial road to 
 the total building area. We defi ned Arterial roads as those with type ‘B Road’.
3. Pedestrian Roads Percentage of the area of buildings that their centroid is within 100 m of a pedestrian road 
 or footway to the total building area.
4. Railway Tracks Percentage of the area of building units that their centroid is within 100 m of railway tracks, 
 excluding tunnels, to the total building area.
5. Woodland Areas Percentage of the area of building units that their centroid is within 100 m of woodland 
 features to the total building area.
6. Surface Water Percentage of the area of building units that their centroid is within 100 m of surface water 
 (inland) and seafront (calculated by the distance from the coastal line), but excluding small 
 rivers and streams, to the total building area.

Intermediate eff ects
7. Railway Stations Percentage of the area of building units that their centroid is within 600 m from the centroid 
 of a railway station to the total building area.
8. Parks & Gardens Percentage of the area of building units that their centroid is within 600 m from the registered 
 site extents to the total building area.
9. Retail Centres Percentage of the area of building units that their centroid is within 600 m from the retail 
 centre centroid plus 200 m to the total building area.
10. Schools Percentage of the area of building units that their centroid is within 600 m from the sites that 
 are identifi ed as primary through secondary education to the total building area. 
11. Higher Education Percentage of the area of building units that their centroid is within 600 m from the sites that 
 are identifi ed as further and higher education to the total building area.

Direct measures
12. Detached Ratio Percentage of unshared households that are classifi ed by the 2011 Census as detached 
 housing to the total building area.
13. Semi-Detached Ratio Percentage of unshared households that are classifi ed by the 2011 Census as semi-detached 
 housing to the total building area.
14. Terraced Ratio Percentage of unshared households that are classifi ed by the 2011 Census as terraced 
 housing to the total building area.
15. Flat Ratio Percentage of unshared households that are classifi ed by the 2011 Census as Flats to the total 
 building area.
16. Density Ratio of persons to total building area (people/he).
17. Cul-de-sac Ratio of culs-de-sac or dead-end road points to the total OA area (points/he).
18. Registered Buildings Ratio of listed buildings to the total OA area (points/he)
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a SOM approach to cluster our input dataset 
using the methodology described by Spielman 
and Folch (2015). A relatively unexplored built 
environment classification with too many 
clusters would be difficult to interpret, so we 
selected a 4-by-2 hexagonal grid, which pro-
duces eight distinct clusters. We implemented 
a hexagonal geodesic grid to project results. 
A geodesic plane forces the cells’ relations to 
‘loop’ around the edges, while the hexagonal 
representation is typically favoured over 
grids, as this configuration benefits from 
every cell having six immediate neighbours. 
The other main parameters of the SOM 
algorithm are the learning rate alpha, which 
we defined to progress linearly from 0.05 to 
0.01 over fifty reconfigurations (updates), and 
the initial size of the neighbourhood, in this 
instance a distance chosen in such a way that 
two-thirds of all distances of the map units 
fall within the topological extents. The neigh-
bourhood decreases linearly during training 
until the algorithm reaches equilibrium. The 
algorithm has achieved equilibrium at ~25 
iterations, meaning that no more changes to 
the observations’ configuration were required, 
with the mean distance to the closest unit in 
the map at 11.34. Once areas were assigned 
to clusters, we then implemented a radar 
plot to map their characteristics on the basis 
of the input variables as we show in figure 
4. This enables classes to be labelled and the 
following short descriptions to be created:

High Street and Promenades. These clearly 
depicted areas represent the main retail 
centres of urban regions located along the 
main commercial streets. This cluster also 
includes areas with signifi cant pedestrianized 
street networks, especially along seafronts, 
where a lot of recreational and leisure venues 
can be found.

Central Business District. The area often called 
city centre. Typically high-rise buildings with 
a lot of commercial and offi  ce spaces, hence 
the relatively low net population density. 
These areas have proximity to the majority 

As such, in this framework we adopt the 
alternative technique of a Self-Organizing 
Map (SOM). A SOM is an unsupervised classi-
fier that uses artificial neural networks to 
classify multidimensional observations in two-
dimensional space based on their similarities 
(Kohonen, 2001). A SOM typically organizes 
observations by projecting them onto a plane, 
and through consecutive iterations finds the 
best configuration of observations so that 
every observation is most similar to the others 
closest to them. Typically, the SOM mapping 
process employs a lattice of squares or hexa-
gons as the output layer, and the results are 
therefore easily mapped as they retain their 
topology. SOMs have many applications in 
a broad range of fields, from medicine and 
biology to image analysis and computer 
science. SOMs have also been tested as an 
alternative classifier of census data (Spielman 
and Thill, 2008; Arribas-Bel and Schmidt, 
2013) where they seem to perform well for 
socioeconomic data at the US Census tract 
scale. Arribas-Bel et al. (2011) have also 
demonstrated the algorithm capabilities to 
measure urban sprawl in Europe using a 
similar attribute set, specifically six variables: 
connectivity; decentralization; density; scatter-
ing; availability of open space; and land-use 
mix. The technique also has the advantage 
of not assuming any hypotheses regarding 
the nature or distribution of the data, and 
responds well to geographic sensitivity. A fur-
ther advantage of using a SOM is the capacity 
to visualize the structure of data values 
aiding initial data exploration. This feature 
can be very useful when analyzing datasets 
such as our built environment measures, 
where there are little to no a-priori hypotheses 
on their underlying distribution. 

As input to this analysis the dataset com-
prising the eighteen variables described in 
table 2 was transformed into z-scores in order 
to standardize the measures. The majority 
of the analysis and output production was 
performed in the R programming language 
using the ‘Kohonen’ library (Wehrens and 
Buydens, 2007). More specifically, we adopted 
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railway tracks and railway stations. They have 
no other major distinguishing att ributes which 
may suggest that they are actually rather 
heterogeneous in physical structure.

Suburban Landscapes. These areas are typically 
of semi-detached houses, with good access 
to parks. They tend to be quite distant from 
town centres. They are primarily residential 
areas, and close to schools. Culs-de-sac are 
relatively common, probably because of 
organized developments and gated communi-
ties.

Countryside Sceneries. These areas are dott ed 
with detached houses, and are located either 
near or within open countryside. Most rural 
villages fall into this category, along with 
some city fringe developments that lie beyond 
the classic suburbs.

Waterside Sett ings. The principal defi ning att ri-
bute of these neighbourhoods is their proximity 
to surface water such as rivers, canals or 
sea. Some of these areas are ports, industrial 
or post-industrial sites. Distinctive infra-
structure is arterial roads, i.e. roads wide 
enough to be used by lorries for the distri-
bution of goods.

A Comparison of MODUM and OAC

In order to test whether the Multidimensional 
Open Data Urban Morphology (MODUM) 
classifi cation systematically follows the con-
ventional OAC geodemographic classifi cation, 
we correlate the two sets of output classes 
via a contingency table. Table 3 shows the 
frequency distribution of MODUM within 
OAC 2011. Supergroup 6. Rural residents seems 
to be identifi ed fairly well by the morpho-
logical features, with a correlation of more 
than 82 per cent, followed by a small percent-
age of Waterside Sett ings and Suburban Land-
scapes. About half the areas categorized as 
suburban also fall into this category, which 
is to be expected taking into account that 
typologies tend to blend out at the urban 

of public amenities, and have plenty of access 
via major roads and railways. For moderate-
size cities the title holds true, but in areas 
such as London they tend to be too expansive 
to be labelled as central (fi gure 6).

The Old Town. The traditional town centre, 
usually close by the main high street. It is 
strongly defi ned by the amount of registered 
buildings. Typically a lot of recreational facili-
ties can be found there, like pubs and restaur-
ants, along with many administrative build-
ings and some historical major roads. Although 
it does have a considerable amount of fl ats, 
densities remain low, potentially due to 
refurbishments and change of usage.

Railway Buzz. These areas are dominated by 

Figure 4. Final cluster results produced by the 
SOM, with mean attribute centres per cluster.
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Table 3. Contingency tables showing frequencies of OAC 2011 classes within MODUM.
Output Area Classifi cation 2011 – Supergroup Level

MODUM Cluster 1. 2. 3. 4. 5. 6. 7. 8.
Description Rural Cosmo- Ethnicity Multi- Urbanites Suburban- Constrained Hard- OA
 residents politans central cultural  ites city pressed Amounts
    metro-   dwellers living
    politans
 % % % % % % % %
1. Suburban 
Landscapes 5.53 2.83 3.38 24.82 23.77 38.97 22.12 43.33 46,788
2. Railway Buzz 0.99 10.61 13.50 10.09 8.31 3.08 7.31 5.33 12,186
3. The Old Town 0.25 17.87 5.35 0.58 4.05 0.05 4.76 0.30 2,812
4. Victorian Terraces 1.20 14.43 16.56 43.93 24.59 1.79 39.38 34.98 49,860
5. Waterside Sett ings 8.43 5.03 3.56 6.98 12.08 6.73 8.04 8.82 12,468
6. Countryside  82.45 2.05 0.43 2.91 18.89 47.79 2.14 3.90 3,172
Sceneries  
7. High Street and  1.07 6.20 4.28 3.00 4.03 1.50 4.98 2.47 1,299
Promenades  
8. Central Business  0.08 40.99 52.94 7.68 4.26 0.09 11.27 0.88 52,823
District

Sum (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 181,408

Figure 5. Built environment and socio-spatial patterns for the cities of Bristol (top) and 
Leeds (below). The two classifications, MODUM and OAC 2011, share many common 
locations, especially towards the city centre. In general, axial zones exhibit much 
more strongly in the morphological classification, while OAC seems to have a more 
‘regionalized’ patterning, at least within local extents.
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order to demon-strate the overall patt ern 
relationships between MODUM and OAC.

A chi-square test of the two categorical 
values shows that the two classifications have 
a significant relationship between them. We 
can measure the strength of the association by 
calculating the Cramer’s V value φc = 0.328, 
which indicates an important level of associa-
tion, given that φc can take values between 0 
(no association) and 1 (complete association).

Discussion and Further Research

The development of MODUM illustrates that 
the production and analysis of a classifi cation 
of the built environment using Big and Open 
Data can off er unique insights into some 
aspects of geodemographic structure of urban 
areas. The results capture, through the multi-

edges. The expansive central areas seem to 
be mainly populated by Supergroup 2. Cosmo-
politans and Supergroup 3. Ethnicity Central. 
Moving out of the centre, Victorian Terraces 
seem to be scatt ered across three classes, 
Supergroup 4. Multicultural Metropolitans, Super-
group 7. Constrained City Dwellers and Super-
group 8. Hard-Pressed Living. The suburban 
class is most interesting, as 43 per cent of 
the areas classifi ed as suburban is populated 
by areas identifi ed as hard-pressed living. 
Generally speaking, unique classes in the 
MODUM classifi cation such as the old city 
centre and railway-heavy areas seem to 
be equally dispersed among classes. Some 
further analysis could provide bett er insight 
as to why, and even reveal interesting 
patt erns. Figure 5 provides two diff erent sets 
of maps of the area of Bristol and Leeds, in 

Figure 6. Mapping the MODUM classification for the Greater London Area.
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ever, geodemographics are nevertheless still 
valuable in many circumstances, mainly because 
they are practicable. Our own classification is 
easy to use, and offers the ability to append 
and update data as it becomes available, while 
keeping the same model infrastructure intact. 
In general, it meets the growing need for 
geodemographic systems that are open and 
versatile enough to handle the abundance of 
big data that is currently available.
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