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Identifying socio-spatial patterns through geodemographic classification has proven
utility over a range of disciplines. While most of these spatial classification systems
include a plethora of socioeconomic attributes, there is arguably little to no input
regarding attributes of the built environment or physical space, and their relationship
to socioeconomic profiles within this context has not been evaluated in any systematic
way. This research explores the generation of neighbourhood characteristics and
other attributes using a geographic data science approach, taking advantage of the
increasing availability of such spatial data from open data sources. We adopt a SOM
(Self-Organizing Maps) methodology to create a classification of Multidimensional
Open Data Urban Morphology (MODUM) and test the extent to which this output
systematically follows conventional socioeconomic profiles. Such an analysis can
also provide a simplified structure of the physical properties of geographic space that

can be further used as input to more complex socioeconomic models.

Geodemographics is a field of quantitative
geography that engages in the analysis and
classification of populations into discrete
classes based on socioeconomic and built en-
vironment characteristics of small-area geo-
graphy. Simply put, geodemographics is
the “analysis of people by where they live’
(Sleight, 1997, p. 16). Such classifications have
demonstrated utility over a range of public
and private sector applications (Longley, 2005;
Longley and Goodchild, 2008; Reibel, 2011;
Singleton and Spielman, 2013). A geodemo-
graphic analysis is essentially a data reduction
methodology that aggregates populations, so
that correlations between sub-populations can
be drawn on with ease. It involves the process
of producing key statistics of a particular
area, on the basis of the characteristics of its
residents and their contexts.
Geodemographic applications were initially
developed as a strategy to analyse and system-
atically document socio-spatial segregation.
The associated data reduction methods were
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established in the 1970s (Webber, 1978),
although a wider review and interpretation
would extend right back to the ‘human
ecology’ studies from the Chicago School of
Sociology in the 1920s (Burgess, 1925), social
area analysis in the 1950s (Shevky and Bell,
1955) and the factorial ecologies of the 1970s
(Janson, 1980). Although that geodemo-
graphics has evolved considerably over the
years (Singleton and Spielman, 2013), its
conceptual background is still wedded to the
principle that people tend to align themselves
with the behaviour and aspirations of the
local communities in which they live. The
inferential nature of the aggregations rely on
the notion of societal homophily, or in other
words, that ‘birds of a feather flock together’
(Harris et al., 2005). As such, people who live
close by (e.g. in the same neighbourhood)
are more likely to have commonalities in
attributes and behaviours than a randomly
selected group of people.

Although geodemographic frameworks can
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capture a wide set of input attributes, current
classification systems typically include little
to no input of explicitly spatial attributes
regarding the built and physical attributes of
neighbourhoods. There is, however, an abun-
dance of variables that might be collected
on the built forms and relative locations that
underpin neighbourhood differentiation. For
instance, proximity to certain amenities is im-
portant to residential decisions such as trans-
port nodes, parks, retail and healthcare-
facilities. There has, for example, been exten-
sive research into the topic of analysing relation-
ships between accessibility and urban develop-
ment patterns, (e.g. land use-transportation
interaction (LUTI) models); and connectivity
has been advanced as a key feature in shap-
ing urban residential dynamics and socio-
spatial segregation (Dear, 2002). Research on
residential decisions has also attracted a lot of
attention over the years, particularly through
hedonic modelling. While most of the rele-
vant research focuses on the importance of
work location (Van Ommeren et al., 1999;
Renkow and Hoover, 2000), there is strong evi-
dence that certain demographic groups favour
some relative locations over others, and that
the nature and configuration of the local built
environment and land-use characteristics are
also relevant (Hui et al., 2007). For instance,
individuals with children often favour green
space and recreational opportunities nearby,
while those without children prefer smaller
residences that offer closer proximity to cen-
tral services (Colwell et al., 2002). Other
characteristics may impact the area as un-
favourable due to negative externalities, such
as high-speed roads or railway tracks within
the vicinity of the neighbourhood (Parkes
et al., 2002). It is unclear exactly how such
characteristics impact upon residential decisions
as there are many synergies involved across
lifecycles (Kim et al., 2005). For instance, mod-
erate proximity (200 m to 300 m) to a green
space may mitigate negative effects of noise
pollution (Gidlof-Gunnarsson and Ohrstrom,
2007).

Some census variables reflect limited built
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environment characteristics, for instance hous-
ing type and population densities. For classi-
fication systems that have been developed en-
tirely from census variables, such as the pub-
licly open ONS (Office of National Statistics)
Output Area Classification (OAC) for 2011,
attributes such as density can, however, be
misleading; the arbitrary nature of the geo-
graphic extents of the administrative areas for
which population measurements are offered
renders comparisons between the physical
features ineffective. Other proprietary geodemo-
graphic classifications, such as Mosaic by Ex-
perian (Nottingham, UK) and Acorn by CACI
(London, UK) include some measures of rela-
tive location (CACI, 2013; Experian, 2014).
However, to what precisely these attributes
pertain, how they are used in the clustering
process and the weight they are assigned
in the final classification remains obscure,
because of the commercial sensitivities that
are inherent in ‘black box” commercial solu-
tions (Singleton and Longley, 2009).

In this paper, we test whether specific
and multidimensional urban morphologies
systematically correspond with socioeconomic
characteristics at the neighbourhood level. In
order to identify and analyse such attribute
patterns, we adopt a geodemographic ap-
proach, which involves the creation of a classi-
fication for a national extent, based on cluster-
ing at the small area level. In essence, we try
to identify the physical and built environment
characteristics that might be used to supple-
ment neighbourhood typologies.

Open Data Inputs

This research captures a variety of physical
attributes collected for a small-area geography,
and in order to enhance reproducibility, repli-
cation and extension these inputs are assembled
from Open Data sources (Singleton et al., 2016).
We produce a classification at the 2011 UK
Census Output Area level for the 181,408
Output Areas (OAs) that make up England
and Wales. One of the main providers of geo-
graphical data for England and Wales is the
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national mapping agency Ordnance Survey
(OS), and there are many datasets available
within their repository, with varying degrees
of granularity, depending on whether they
are publicly accessible or available for pur-
chase. As this paper focuses on Open Data
sources, we use OS Open Map — Local, the
most recent and detailed open OS vector
data product currently available (Ordnance
Survey, 2015). However, within different con-
texts, such data might also be supplemented
by other national mapping agency data, or
alternative sources such as OpenStreetMap
(www.openstreetmap.org). The OS vector
data product provides a variety of informa-
tion including outlines of buildings, street
network with hierarchy, railways, woodland
areas, surface water and important functional
sites.

While the OS Open Map — Local provides
the main source of this data, there were a
few other sources within England and Wales

deemed of utility. These included data about
listed buildings and historic parks and gardens
supplied by the Historic England Archive (https://
services.historicengland.org.uk/NMRData
Download/) which is regularly updated
(November 2015 update used here) and also
under Open Data License. For Wales, the cor-
responding provider is the Cadw heritage
organization (available through the UK data
Service, https://data.gov.uk/dataset/listed-buil
dings-in-wales-gis-point-dataset), although the
data are slightly outdated (September 2011).
Commercial buildings for local retail centres
were identified using data from the Local
Data Company, an Open version of which is
available through the ESRC Consumer Data
Retail Centre. Finally, we included aggregated
data on housing type from the 2011 Census
supplied by the Office for National Statistics
(ONS). Unfortunately, there are currently no
Open Data available on building age or height.

Table 1 summarizes the range of inputs

Table 1. Description of the spatial dataset compiled for England and Wales.

Variable Name Variable Description

D1: OA Boundaries 181,408 Output Area boundaries, as defined by the 2011 Census. All other data were spatially

joined with the respective OAs that they fall into (data features were split when falling into more

than one OA).

12,878,666 Building objects represented as polygons. Note that these areas do not represent

individual households.

Road network is represented as line segments, approximate to the road centre. The categories

include ‘Motorway’, ‘Primary Road’, ‘A Road’, ‘B Road’, ‘Minor Road’, ‘Pedestrianized Street’,

‘Local Street’ and ‘Private Road Publicly Accessible’, as well as their ‘Collapsed Dual

Carriageway’ counterparts.

D3: Woodland Areas of trees represented as polygons, described as coniferous and non-coniferous.

D4: Functional Sites/ 120,677 Building polygons that can be found within functional sites. They are categorized

Important Buildings  into themes such as Air Transport, Education, Medical Care, Road Transport and Water
Transport, which are further classified into numerous more discrete classes.

D5: Railway Stations ~ Railway tracks and tunnels represented as lines (in this instance we used tracks only in the

and Tracks analysis) and Railway Stations defined as points.

Dé6: Surface water Polygons of surface water. Small rivers and streams are represented as lines and were not

included in the dataset. The dataset was also supplemented with ‘seawater’, derived from the

country’s coastline.

406,496 listed historic buildings defined as points, which were geolocated.

D1: Buildings

D2: Road Network

D7: Registered
Historic Buildings
D8: Registered Parks 2,007 Polygon features with extents of the parks / gardens, classified as I, IT*, or II, from most
and Gardens to least important. For Wales, the 372 sites were identified from points from a ‘Named Places’
dataset and given an approximate 200 m radius.

1,312 Retail Centres across England and Wales. There is no recent update for this dataset
which dates back to 2004. The centres are only depicted as points and have no typology attached.
We assumed an average radius of 200 m to convert them to areas.

Percentage of households that are classified by the Census as Detached, Semi-detached, Terraced
or Flat.

Population of total persons per OA.

D9: Retail Centres

D10: Housing Type

D11: Population
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used to derive measures featured in this was made by the Department for Com-
analysis. munities and Local Government in 2005,
The classification presented later was created within the framework of the ONS Neighbour-
for Output Areas (LSOAs), and as such the hood Statistics, described as Land Use Statistics.
input measures were assembled for this geo- The dataset was described as a generalized
graphy. These zones offer advantage over land-use database aggregated into OAs. The
other administrative units in England and dataset contained estimates of built environ-
Wales since many other socioeconomic classi- ment attributes, such as roads, paths, domestic
fications are offered at the OA level, such as and non-domestic buildings, domestic gardens,
the 2011 ONS Output Area Classification, water, rail etc. Despite the fact that the pro-
thus making comparisons possible. Addition- prietary OS Enhanced Basemap was used
ally, such geography also allows the incor- to create this resource, ONS classified it as
poration of Census data which is distributed experimental, as there were issues of accuracy,
for these units. However, for the range of mainly arising because only the centroids of
the derived measures that are described in features were taken into account in class assign-
the remainder of this section, there are prob- ments of aggregations.
lems with this approach. OA borders were To facilitate these methodological short-
designed to maximize within zone homo- comings, we adopted three different types of
geneity in population characteristics (popula- attribute measures for each OA that related
tion normalization), without regard to the to either two types of proximity measures
geographical features of the area (Martin et including adjacency effects or intermediate effects;
al., 2001; see figure 1). As such, for proximity and additionally direct measures. The last of
based inputs there were challenges about these are simply attributes captured at the OA
how such measures might be calculated, and level, while the first two assume buildings
to which area they should be attributed. as the initial unit of analysis which are then
A similar attempt to create such a dataset later assigned to OAs. Building polygon

Figure 1. Maps looking at the un-generalized Output Area borders (black lines) around Sefton Park,
Liverpool. Left: Notice how the area of the park is divided arbitrarily between proximal OAs (crosshatched
pattern). Right: Output Area borders usually coincide with the street network, making simple street
network-to-area assignments impracticable.
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features serve as observations in this input
dataset, and represent homogenous built-up
areas which can include one or more house-
holds. A graphical representation of the model
is described in figure 2. All the attributes
collated as input across all domains are sum-
marized in table 2.

For both types of proximity measure, we
used a series of spatial queries that identified
buildings that fulfil certain criteria, for in-
stance, which buildings are within a set dis-
tance of a major street? The buildings that
met each criterion were then assigned to OA
aggregations with weights determined by their
attributed area. Thus, within each OA, a ratio
of the area of buildings meeting the criteria
relative to the total built areas was calculated
for each of the attributes considered in the
analysis. The necessity to differentiate between
adjacency and intermediate proximity effects
follows the logic that not all built environ-
ment characteristics have the same effect,

Proximity Measures

Natural
Environment

and these effects may vary in scale. For
example, when considering the location of a
residential property, being adjacent to a very
major road might be perceived as having a
negative impact, given the noise/pollution
associated with increased traffic volumes,
whereas being near, but not adjacent to a busy
road might be perceived as advantageous,
given the enhanced connectivity this might
facilitate.

We defined adjacency effects to features
measured within 100 m linear distance, as
commonly used in the literature on negative
externality effects of built environment features,
such as noise or pollution from roads (Rijn-
ders et al., 2001). For intermediate effects a dis-
tance of 600 m was used, on the basis of
various Western international definitions of
‘within walking distance’. The distance figure
generally varies depending on the context of
analysis, but distances between 300 m and
900 m are considered appropriate for urban

Additional
Data

Individual-level
Building Data

Public
Amenities

Output Area Output
Aggregation Classification
Housing
Stock

Figure 2. The spatial data model used to process data and produce Output Area inputs to the classification.
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features (Hui ef al., 2007; Barbosa et al., 2007;
Villeneuve et al., 2012; Vale, 2015).

Beyond these distances we assume there
are no adjacency or intermediate effects.
The delineation of adjacency effects or inter-
mediate effects brings additional practical con-
siderations which relate to the overall den-
sity of the built environment features being
considered. In common with practice when
creating inputs to multidimensional classifica-
tions, preference should be for those attri-
butes which, in addition to theoretical rationale,
also provide useful differentiation between
areas (Spielman and Singleton, 2015). For
example, in this application, when 600 m buf-
fers were used for major roads, this resulted
in more than 50 per cent of buildings meet-
ing this criterion, thus providing a weak differ-
entiation. These tasks were computationally
expensive, as the complete dataset contains
more than 12.8 million observations (building
polygons). Thus the database was pre-

Kingston-upon-Hull
O Culde-sacs

j Buildings

Ratio of Points to OA area (he)
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1 o7- 207

processed into regional datasets which were
then computed separately using the R pro-
gramming language.

Finally, there were two further types of
direct measures: those which were derived
from geographic features, and those which
were simple inputs from secondary data.
The derived direct measures included listed
buildings and culs-de-sac (dangling segments
in the road network). The latter of these was
defined geocomputationally as the end of a
line segment that did not intersect with any
other such segment. A sensitivity of 10 m was
applied to this criterion in order to avoid top-
ological errors and intermittent street seg-
ments. The results show that such measures
can capture specific urban morphologies even
at the small-area level as we show in figure 3.

For the other non-derived direct measures,
the variables were simply aggregated directly
at the OA level, such as the housing type.
Population density was calculated using a

Listed Building Ratio (Area) &
0,000 - 0.258
0.258-1.074

B 1074-2784

B 2764 -5 584

B sse- 10703

B 070310195

%) . o

Figure 3. Left: Attribute of cul-de-sac ratio per OA at Kingston-upon-Hull, Yorkshire. Right: The ratio of

listed (registered) buildings per OA area in Liverpool.
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ratio of persons per total building area, which
potentially would give more accurate results
regarding housing conditions. The final OA
attributes along with their descriptions are
provided in table 2.

A Multidimensional Classification

et al. (2005); however, here we use only built
environment data to create the typology. A
common clustering technique used in geodemo-
graphic analyses is the iterative allocation —
reallocation algorithm, known as k-means.
Although this algorithm has been used in a
variety of geodemographic applications, our

of the Built Environment

Methodologically, our cluster analysis follows
a conventional approach as detailed in Harris

dataset is sparsely populated, and k-means
is known not to respond well to the non-
Gaussian distributions that characterize such
datasets (Everitt et al., 2011).

Table 2. Built environment attributes used in the classification.

Variables

Variable Description, Aggregated per OA Code

Adjacent effects
1. Major Roads

2. Arterial Roads

3. Pedestrian Roads
4. Railway Tracks
5. Woodland Areas

6. Surface Water

Intermediate effects
7. Railway Stations

8. Parks & Gardens
9. Retail Centres
10. Schools

11. Higher Education

Direct measures
12. Detached Ratio

13. Semi-Detached Ratio
14. Terraced Ratio
15. Flat Ratio

16. Density
17. Cul-de-sac
18. Registered Buildings

Percentage of the area of buildings that the centroid is within 100 m of a major road to the total
building area. We defined major as those of type ‘Motorway’, ‘A Road’ and ‘Primary Road’.

Percentage of the area of buildings that their centroid is within 100 m of an arterial road to
the total building area. We defined Arterial roads as those with type ‘B Road’.

Percentage of the area of buildings that their centroid is within 100 m of a pedestrian road
or footway to the total building area.

Percentage of the area of building units that their centroid is within 100 m of railway tracks,
excluding tunnels, to the total building area.

Percentage of the area of building units that their centroid is within 100 m of woodland
features to the total building area.

Percentage of the area of building units that their centroid is within 100 m of surface water
(inland) and seafront (calculated by the distance from the coastal line), but excluding small
rivers and streams, to the total building area.

Percentage of the area of building units that their centroid is within 600 m from the centroid
of a railway station to the total building area.

Percentage of the area of building units that their centroid is within 600 m from the registered
site extents to the total building area.

Percentage of the area of building units that their centroid is within 600 m from the retail
centre centroid plus 200 m to the total building area.

Percentage of the area of building units that their centroid is within 600 m from the sites that
are identified as primary through secondary education to the total building area.

Percentage of the area of building units that their centroid is within 600 m from the sites that
are identified as further and higher education to the total building area.

Percentage of unshared households that are classified by the 2011 Census as detached
housing to the total building area.

Percentage of unshared households that are classified by the 2011 Census as semi-detached
housing to the total building area.

Percentage of unshared households that are classified by the 2011 Census as terraced
housing to the total building area.

Percentage of unshared households that are classified by the 2011 Census as Flats to the total
building area.

Ratio of persons to total building area (people/he).
Ratio of culs-de-sac or dead-end road points to the total OA area (points/he).
Ratio of listed buildings to the total OA area (points/he)
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As such, in this framework we adopt the
alternative technique of a Self-Organizing
Map (SOM). A SOM is an unsupervised classi-
fier that uses artificial neural networks to
classify multidimensional observations in two-
dimensional space based on their similarities
(Kohonen, 2001). A SOM typically organizes
observations by projecting them onto a plane,
and through consecutive iterations finds the
best configuration of observations so that
every observation is most similar to the others
closest to them. Typically, the SOM mapping
process employs a lattice of squares or hexa-
gons as the output layer, and the results are
therefore easily mapped as they retain their
topology. SOMs have many applications in
a broad range of fields, from medicine and
biology to image analysis and computer
science. SOMs have also been tested as an
alternative classifier of census data (Spielman
and Thill, 2008; Arribas-Bel and Schmidt,
2013) where they seem to perform well for
socioeconomic data at the US Census tract
scale. Arribas-Bel et al. (2011) have also
demonstrated the algorithm capabilities to
measure urban sprawl in Europe using a
similar attribute set, specifically six variables:
connectivity; decentralization; density; scatter-
ing; availability of open space; and land-use
mix. The technique also has the advantage
of not assuming any hypotheses regarding
the nature or distribution of the data, and
responds well to geographic sensitivity. A fur-
ther advantage of using a SOM is the capacity
to visualize the structure of data values
aiding initial data exploration. This feature
can be very useful when analyzing datasets
such as our built environment measures,
where there are little to no a-priori hypotheses
on their underlying distribution.

As input to this analysis the dataset com-
prising the eighteen variables described in
table 2 was transformed into z-scores in order
to standardize the measures. The majority
of the analysis and output production was
performed in the R programming language
using the ‘Kohonen’ library (Wehrens and
Buydens, 2007). More specifically, we adopted
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a SOM approach to cluster our input dataset
using the methodology described by Spielman
and Folch (2015). A relatively unexplored built
environment classification with too many
clusters would be difficult to interpret, so we
selected a 4-by-2 hexagonal grid, which pro-
duces eight distinct clusters. We implemented
a hexagonal geodesic grid to project results.
A geodesic plane forces the cells’ relations to
‘loop” around the edges, while the hexagonal
representation is typically favoured over
grids, as this configuration benefits from
every cell having six immediate neighbours.
The other main parameters of the SOM
algorithm are the learning rate alpha, which
we defined to progress linearly from 0.05 to
0.01 over fifty reconfigurations (updates), and
the initial size of the neighbourhood, in this
instance a distance chosen in such a way that
two-thirds of all distances of the map units
fall within the topological extents. The neigh-
bourhood decreases linearly during training
until the algorithm reaches equilibrium. The
algorithm has achieved equilibrium at ~25
iterations, meaning that no more changes to
the observations’ configuration were required,
with the mean distance to the closest unit in
the map at 11.34. Once areas were assigned
to clusters, we then implemented a radar
plot to map their characteristics on the basis
of the input variables as we show in figure
4. This enables classes to be labelled and the
following short descriptions to be created:

High Street and Promenades. These clearly
depicted areas represent the main retail
centres of urban regions located along the
main commercial streets. This cluster also
includes areas with significant pedestrianized
street networks, especially along seafronts,
where a lot of recreational and leisure venues
can be found.

Central Business District. The area often called
city centre. Typically high-rise buildings with
a lot of commercial and office spaces, hence
the relatively low net population density.
These areas have proximity to the majority
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Central Business District

The Old Town Victorian Terraces
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Figure 4. Final cluster results produced by the
SOM, with mean attribute centres per cluster.

of public amenities, and have plenty of access
via major roads and railways. For moderate-
size cities the title holds true, but in areas
such as London they tend to be too expansive
to be labelled as central (figure 6).

The Old Town. The traditional town centre,
usually close by the main high street. It is
strongly defined by the amount of registered
buildings. Typically a lot of recreational facili-
ties can be found there, like pubs and restaur-
ants, along with many administrative build-
ings and some historical major roads. Although
it does have a considerable amount of flats,
densities remain low, potentially due to
refurbishments and change of usage.

Railway Buzz. These areas are dominated by
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railway tracks and railway stations. They have
no other major distinguishing attributes which
may suggest that they are actually rather
heterogeneous in physical structure.

Suburban Landscapes. These areas are typically
of semi-detached houses, with good access
to parks. They tend to be quite distant from
town centres. They are primarily residential
areas, and close to schools. Culs-de-sac are
relatively common, probably because of
organized developments and gated communi-
ties.

Countryside Sceneries. These areas are dotted
with detached houses, and are located either
near or within open countryside. Most rural
villages fall into this category, along with
some city fringe developments that lie beyond
the classic suburbs.

Waterside Settings. The principal defining attri-
bute of these neighbourhoods is their proximity
to surface water such as rivers, canals or
sea. Some of these areas are ports, industrial
or post-industrial sites. Distinctive infra-
structure is arterial roads, i.e. roads wide
enough to be used by lorries for the distri-
bution of goods.

A Comparison of MODUM and OAC

In order to test whether the Multidimensional
Open Data Urban Morphology (MODUM)
classification systematically follows the con-
ventional OAC geodemographic classification,
we correlate the two sets of output classes
via a contingency table. Table 3 shows the
frequency distribution of MODUM within
OAC 2011. Supergroup 6. Rural residents seems
to be identified fairly well by the morpho-
logical features, with a correlation of more
than 82 per cent, followed by a small percent-
age of Waterside Settings and Suburban Land-
scapes. About half the areas categorized as
suburban also fall into this category, which
is to be expected taking into account that
typologies tend to blend out at the urban
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Table 3. Contingency tables showing frequencies of OAC 2011 classes within MODUM.

Output Area Classification 2011 — Supergroup Level

MODUM Cluster 1. 2. 3. 4. 5. 6. 7. 8.
Description Rural Cosmo-  Ethnicity =~ Multi- Urbanites Suburban- Constrained Hard- OA
residents  politans  central cultural ites city pressed Amounts
metro- dwellers living
politans
% % % % % % % %
1. Suburban
Landscapes 5.53 2.83 3.38 24.82 23.77 38.97 22.12 43.33 46,788
2. Railway Buzz 0.99 10.61 13.50 10.09 8.31 3.08 7.31 5.33 12,186
3. The Old Town 0.25 17.87 5.35 0.58 4.05 0.05 4.76 0.30 2,812
4. Victorian Terraces 1.20 14.43 16.56 43.93 24.59 1.79 39.38 34.98 49,860
5. Waterside Settings 8.43 5.03 3.56 6.98 12.08 6.73 8.04 8.82 12,468
6. Countryside 82.45 2.05 0.43 291 18.89 47.79 2.14 3.90 3,172
Sceneries
7. High Street and 1.07 6.20 4.28 3.00 4.03 1.50 498 2.47 1,299
Promenades
8. Central Business 0.08 40.99 52.94 7.68 4.26 0.09 11.27 0.88 52,823
District
Sum (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 181,408

I Constrained Oty Dvesllers.
I ard-prevsed Living

Figure 5. Built environment and socio-spatial patterns for the cities of Bristol (fop) and
Leeds (below). The two classifications, MODUM and OAC 2011, share many common
locations, especially towards the city centre. In general, axial zones exhibit much
more strongly in the morphological classification, while OAC seems to have a more
‘regionalized” patterning, at least within local extents.
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edges. The expansive central areas seem to
be mainly populated by Supergroup 2. Cosmo-
politans and Supergroup 3. Ethnicity Central.
Moving out of the centre, Victorian Terraces
seem to be scattered across three classes,
Supergroup 4. Multicultural Metropolitans, Super-
group 7. Constrained City Dwellers and Super-
group 8. Hard-Pressed Living. The suburban
class is most interesting, as 43 per cent of
the areas classified as suburban is populated
by areas identified as hard-pressed living.
Generally speaking, unique classes in the
MODUM classification such as the old city
centre and railway-heavy areas seem to
be equally dispersed among classes. Some
further analysis could provide better insight
as to why, and even reveal interesting
patterns. Figure 5 provides two different sets
of maps of the area of Bristol and Leeds, in

0 25 5 75 10km }
— T u

order to demon-strate the overall pattern
relationships between MODUM and OAC.
A chi-square test of the two categorical
values shows that the two classifications have
a significant relationship between them. We
can measure the strength of the association by
calculating the Cramer’s V value ¢_= 0.328,
which indicates an important level of associa-
tion, given that ¢_can take values between 0
(no association) and 1 (complete association).

Discussion and Further Research

The development of MODUM illustrates that
the production and analysis of a classification
of the built environment using Big and Open
Data can offer unique insights into some
aspects of geodemographic structure of urban
areas. The results capture, through the multi-

MODUM Classification

Greater London
High Street and Promenades
The Old Town
Central Business District
I Victorian Terraces
I Suburban Landscapes
I Countryside Sceneries
Il Waterside Settings
B Railway Buzz

Figure 6. Mapping the MODUM classification for the Greater London Area.
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dimensionality of the data, both microscopic
and macroscopic identifiers of urban morph-
ology. The classification can be used as input
to more complex socioeconomic models, in-
creasing robustness. There is strong evidence
that residential preference is in significant
part related to form of the built environment,
suggesting that there is an important dimen-
sion to residential decisions beyond homo-
phily. This raises some logical discrepancies
in current socioeconomic geodemographic
classifications; the conceptual ‘control by
aggregation’ does not account for these un-
observed variables. For instance, one would
expect house prices to drop significantly
very close to railway tracks. However, these
localized phenomena are aggregated in the
general context of the area, and thus patterns
get ‘smoothed away’, raising some issues
about the success of geo-classifications (Voas
and Williamson, 2001). While gathering this
type of behavioural data would be next to
impossible, their outcomes can be observed
through peoples’ residential decisions on local
morphology.

Furthermore, the MODUM classification
can not only enhance socioeconomic classi-
fications, and take into account microscopic
variation, but also prove useful in itself; it
can provide a simplified structure of the physical
properties of geographic space that can be
used to explore correlations with other spatial
phenomena, potentially in a variety of applica-
tions, from real estate and house prices to
health and wellbeing. In a dynamic sense, it
can be used by urban planners and investors
in the built environment to identify the areas
in which the physical preconditions exist for
neighbourhood renewal or upscaling.

On the other hand, the classification pro-
cess described here is very specific to the under-
lying data and methodology. An inherent
disadvantage of all geodemographic classi-
fications is that lack of a single global optimi-
zation function during the classification pro-
cedure, making them highly susceptible to
the operational decisions during the creation
process (Openshaw and Gillard, 1978). How-

BUILT ENVIRONMENT VOL 42 NO 3

ever, geodemographics are nevertheless still
valuable in many circumstances, mainly because
they are practicable. Our own classification is
easy to use, and offers the ability to append
and update data as it becomes available, while
keeping the same model infrastructure intact.
In general, it meets the growing need for
geodemographic systems that are open and
versatile enough to handle the abundance of
big data that is currently available.
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