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Abstract

This paper examines objective purchasing information for inherently seasonal self-medication product
groups using transaction-level loyalty card records. Predictive models are applied to predict future
monthly self-medication purchasing. Analyses are undertaken at the lower super output area level,
allowing the exploration of ~300 retail, social, demographic and environmental predictors of
purchasing. The study uses a tree ensemble predictive algorithm, applying XGBoost using one year of
historical training data to predict future purchase patterns. The study compares static and dynamic
retraining approaches. Feature importance rank comparison and accumulated local effects plots are
used to ascertain insights of the influence of different features. Clear purchasing seasonality is
observed for both outcomes, reflecting the climatic drivers of the associated minor ailments. Although
dynamic models perform best, where previous year behaviour differs greatly, predictions had higher
error rates. Important features are consistent across models (e.g. previous sales, temperature,
seasonality). Feature importance ranking had the greatest difference where seasons changed.
Accumulated local effects plots highlight specific ranges of predictors influencing self-medication
purchasing. Loyalty card records offer promise for monitoring the prevalence of minor ailments and

reveal insights about the seasonality and drivers of over-the-counter medicine purchasing in England.
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Introduction

Fine resolution public health information is vital in determining at-risk populations (Hay et al., 2005).
Data driven applications are improving health surveillance frameworks (increasingly in real-time) and
have proven to help in the discovery of specific at-risk populations (Ginsberg et al., 2009; Raghupathi
and Raghupathi, 2014). Identification of potentially life threatening complications (e.g. thoracic aortic
dissection) (Andreu-Perez et al., 2015) and evidence-based prescribing (Raghupathi and Raghupathi,
2014) are possible when deploying a data driven approach to medicine. Despite this, clinical based
data lack temporality and have high associated creation and collection costs (Andreu-Perez et al.,
2015).

Repurposing data from non-traditional sources (e.g. over the counter medicine transactions) are
improving how we approach public health (Davies, Green and Singleton, 2018). These new forms of
data are collected automatically (e.g. real-time transactions) and have allowed new approaches to
healthcare surveillance through the utilisation of big data (Ginsberg et al., 2009). Successful

applications include using search engine data to predict influenza outbreaks (Google Flu Trends)



(Cook et al., 2011), social media (e.g. Twitter data) to track post-earthquake Cholera outbreaks in
Haiti (St Louis and Zorlu, 2012), and loyalty card data to explore self-medication purchasing (Davies,
Green and Singleton, 2018). These surrogate sources allow superior speed and detail, providing a
framework for fast estimates, inferences and early detection of disease (Magruder, 2003; Butler, 2013;
Olson et al., 2013; Raghupathi and Raghupathi, 2014; Santillana et al., 2014), and have been found

correlated to actual disease data (Valdivia et al., 2010).

Transactions linked with loyalty card data create a significant opportunity to improve knowledge
regarding the prevalence and seasonality of minor ailments by leveraging information regarding the
purchase of over-the-counter medication. These data do not only offer potential for merely monitoring
prevalence but also aid in understanding the drivers of self-medication behaviours and predicting
future behaviour. Self-medication offers a significant benefit to reducing the healthcare burden of
minor ailments (Heikkinen and Jérvinen, 2003; Pillay et al., 2010), however as most of this
information is held within industry, access is rare. Existing research has explored associations
between primarily socioeconomic features and both prescription and over the counter medicines (e.g.
Green et al. (2016)), where surveys are a common data source. Temporality within over the counter
purchasing has been considered (e.g. Magruder (2003) and Magruder et al. (2004)) although
applications have largely been exploratory and few applications have had access to loyalty
information (e.g. Davies, Green and Singleton, 2018 or Nevalainen et al., 2018). This paper seeks to
address this gap in the research into real-time objective purchasing information in terms of both

understanding and predicting self-medication behaviours temporally.

Health-literacy, emergent from the self-care movement, has developed amongst the general
population where over the counter medicine usage is high (Magruder, 2003). Sales of these medicines
have been found highly correlated with physician records whilst reaching wider audiences than
prescriptions (Magruder, 2003). Insights of purchasing behaviour are important for understanding the
prevalence of over the counter medication which can infer the extent of ailments. Alternatively, this
information could be used in a preventative framework to identify at-risk populations based on over-
the-counter purchasing behaviours, which could aid clinicians in addressing issues such as self-
medication dependence, misdiagnosis and concurrent medication (Bradley and Bond, 1995; Hughes,
McElnay and Fleming, 2001). Accessing over the counter transaction data offers an opportunity for
novel insights into self-medication behaviours, and the possibility of knowledge for future disease
trends. The combination of transactions with anonymised loyalty information address the issues seen
in other data (e.g. aggregation (Ginsberg et al., 2009) or self-reporting bias (Green ef al., 2016)),

allowing accurate information retention.



This study utilises loyalty card records to (1) understand self-medication behaviours; (2) explore how
behaviours vary over time and the drivers of these trends; and (3) highlight opportunities for using

such records to predict future purchasing.

Methods

Data

We used anonymised transaction records linked to customer loyalty records from a national high
street retailer, 2012 to 2014. Data are automatically collected and combined with loyalty accounts
when a customer presents a loyalty card during transaction. The data contained anonymised individual
level transactions for ~15 million customers grouped into ~300 categories. Data cleaning removed
unrealistic (e.g. ages below 18 and above 100), missing values, and customers from outside of
England. Data were constrained to England as prescription practices vary throughout the constituent

countries of the UK.

We selected two outcomes — hay fever and coughs and colds. These minor ailments were chosen
because they were identifiable within the high street retailer’s hierarchical product categories. Both
ailments are associated with commonly self-treated conditions and provide contrasting seasonal
patterns. Other medicines categories were less distinct in the hierarchy are therefore excluded. We
opted to use the finest level of detail available (lowest hierarchy groups) to avoid loss of context.
Transactions were aggregated to Lower Super Output Area Level which are administrative areas
containing a mean population of ~1500 people (n = 32843, excluding the Isles of Scilly) (Office for
National Statistics, 2016). Aggregated values were the proportion of customers purchasing each

outcome per month.

A data driven approach was taken for the selection of explanatory variables (detailed later). We
included any predictor available that had been demonstrated in the literature to be associated with

self-medication or health behaviours, resulting in an initial count of ~300 predictors.

Environmental predictors of weather (Robinson et al., 2017) and yearly pollution data (Brookes et al.,
2016) were aggregated from a national coverage raster grid (1x1km) to produce monthly LSOA
averages. These data sources (CHESS and DEFRA) were selected as they are openly downloadable
and useable for research, providing accurate modelled national coverage raster information. The
outcomes are inherently seasonal therefore the influence of the weather and environment is an
important consideration. Research suggests an environmental influence for these ailments (e.g. air

quality and rhinitis) (Charpin and Caillaud, 2017).



Accessibility measures included predictors from the Index of Access to Healthy Assets and Hazards; a
comprehensive data resource measuring contextual and geographical features related to health (e.g. air
quality, green space) and overall index combining all measures (Green ef al., 2018). Air quality
measures (e.g. SO2, PM10) are cited as causes of both ailments and have previously been identified
as predictive features (Hajat et al., 2001; Heikkinen and Jéarvinen, 2003; Davies, Green and Singleton,
2018). Individual measures of accessibility to pharmacies and GPs (from the Index of Access to
Healthy Assets and Hazards) were included as a proxy for healthcare access. Physician diagnosis have

previously been found correlated with over the counter medication sales (Magruder, 2003).

Socioeconomic status has previously been found to influence self-medication usage, where higher
status has led to increased over the counter medication usage (Green ef al., 2016). The Index of
Multiple Deprivation (Smith et al., 2015) was used as a proxy for neighbourhood deprivation. The
Output Area Classification (Gale et al., 2016) was selected to measure the demographic
characteristics of neighbourhoods (included as a proportion of Lower Super Output Area per group)
and has been found a predictor of over the counter medication purchasing (Davies, Green and
Singleton, 2018). Rural Urban Classification (Bibby and Shepherd, 2004) was utilised as a proxy for
the effects of living environments, particularly as exposure (e.g. to viruses (PM2.5) and dust (PM10)

(Charpin and Caillaud, 2017)) varies considerably within different environments.

Finally, we utilised information from the high street retailer data (including median age of loyalty
card holders and previous sales). When predicting sales, historical purchasing features have been
found important (Zylius, Simutis and Vaitkus, 2015). Previous month product and related product
transactions were aggregated using the same method as the outcome for use as predictors (e.g. tissues,

pain relief). Further product information including total product sales values were also included.

Statistical analyses

Machine learning models (e.g. tree ensembles) have been demonstrated to perform better than
commonly used time-series methods (e.g. ARIMA) and are more flexible in dealing with large
numbers of predictors (Adamowski et al., 2012; Zylius, Simutis and Vaitkus, 2015; Pavlyshenko,
2016). Tree Ensembles are commonly applied in prediction and bring superior performance for
complex nonparametric data (Chen and Guestrin, 2016). Extreme Gradient Boosting (XGBoost) is a
scalable parallel implementation that combines weak learners to create superior leaners, using
regularisation to minimise overfitting (Chen and Guestrin, 2016). Possessing better efficiency and
speed than other algorithms, XGBoost has been shown to outperform SVMs and Random Forests

(Ogutu, Piepho and Schulz-Streeck, 2011).



A monthly forecasting approach was selected allowing a detailed temporal resolution whilst keeping
model computation feasible. Training data contained a year’s worth of monthly observations per
Local Super Output Area. 10-fold cross validation and a 70-30 train-test data split were used in
parameter tuning. Initial models were static, trained on month 1-12 (April 2012 to May 2013) and
used to predict to month 13-27 (April 2013 to September 2014). A dynamic approach was then
employed, retraining the model in a moving 12-month window producing a separate model per month
to predict months 13-27. Dynamic retraining approaches have been observed to improve performance
(Santillana et al., 2014). The comparison of modelling allows evaluation of the accuracy of predicting
17 months in advance and scrutiny of how the models change with the inclusion of updated

information (vital for evaluating their potential in population health surveillance).

Initially ~300 predictors were available. Following a backward feature selection approach (including
correlation, variance inflation factor and feature importance analysis) features were reduced to 40 for
coughs and colds and 43 for hay fever. Performance increased with feature reduction suggesting more
complexity is not necessarily better (Lazer et al., 2014). Further engineered features included
temporal information (month), and seasonality measures of typical seasons for coughs (Autumn to
Winter (Heikkinen and Jérvinen, 2003)) and hay fever (Spring to Summer (MetOffice, 2018c)) which
improved performance. Hyperparameters and features were kept constant to aid comparison of

models.

Analysis was performed in R (R Core Team, 2014). Modelling was performed in the XGBoost (Chen
et al., 2018), caret (Kuhn, 2008), and ALEPlot packages (Apley, 2018), and visualisations made using
ggplot2 (Wickham, 2016).

Results

Monthly purchasing is more common for coughs and colds than hay fever medicines (1.7%-6.3%, and
0.5%-3.4%, respectively) (figure 1). Monthly proportions are considerably smaller than the total
proportion of customers purchasing products throughout the whole time period (58.6% and 29.4%

respectively).

Seasonality is observed for both medicines, however, hay fever seasons are more clearly defined.
Coughs and colds proportions rise through Winter peaking in December (6.3% in 2012 and 5.5% in
2013). A summer trough is observed with the lowest proportions in June to August (figure 1).
Contrastingly hay fever demonstrates a clear Autumn to Winter off-season. The highest proportions of
hay fever are observed March to September (maximum July 2013 (3.3%) and June 2014 (3.4%)).

Summer 2012 exhibits a lower peak at 2.5%, however, this was the coldest June for two decades



(MetOffice, 2013). The interquartile range is greater for coughs and colds suggesting more variance

nationally (possibly as hay fever is distinctly seasonal).
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Figure 1. Median and interquartile range of proportion purchasing products per month

We next fit models to predict purchasing trends between May 2013 and September 2014. The static
model consistently over predicted coughs and colds purchasing (figure 2a). The predicted values for
dynamic retraining find similar trends in the data, however, a time lag is observed where large
changes occur (e.g. September and December 2013). Figure 1 shows that interquartile range increased
with increased sales. R? values were highest where purchasing proportions are highest (see figure 1)
reflecting the benefits of greater variation in the training data. The range of R? value (0.5-0.7) outlines
good performance. The worst performance is seen in August 2013 and 2014 where the lowest median
proportions are found. Normalised Root Mean Square Error (nRMSE) is consistent across the 17

months and follows a similar trend to the R? value. Model performance increased with dynamic

retraining.

Modelling hay fever (see figures 2d-f) results in trends similar to the training data. July 2013 sees the
peak purchasing for 2013 whereas in 2012 and 2014 July witnesses declining purchasing showing that
this approach fails to pick up yearly changes. This is likely reflecting the low variation in values
across most months, limiting the model training performance. During the off-season, stable trends for

hay fever mean predicted medians are closer to the actual values. However, model performance (e.g.



R? value) is poorer during this period. The decrease in R? is however expected as this is influenced by

the decrease of range within the data therefore explanation of the variance is reduced.

a) Coughs and colds Median values (predicted and actual)

d) Hay fever median values (predicted and actual)
0.06 -

Proportion
Proportion

[ S T S R T S S S S S
>~ c Z © a 5 2 9 c o 5 = > c
3 =1 3 3 o 2 o o3 < [ S S 3 3
= 5 5 2 4 0 2z 0 8 ¢ = < == 3

— Actual Dynamic model prediction —  Static model prediction — Actual Dynamic model prediction —  Static model prediction
b) Coughs and colds RSquared e) Hay fever RSquared

0.7~ 07-

° o

° 13

@ 06~ © 0.6~

3 3

o o

3 3

o o

0.5- 05-
© 0 b 9 O L o® e YT T T T ¥ T e T ® 0 b 9 ® oo o T T ¥ T ¥ T eoT W
> ¢ I 2 a 5 2 © g o = = = ¢ Z o a > ¢ Z 2 a 5 2 © g o = = = ¢ Z o a
£ 332383828 s5¢e 2 223323 £ 3328362885 ¢ 22523323

model_set Dynamic model — Static model model_set Dynamic model — Static model

Jul 14
Aug 14
Sep 14
May 13
Jun 13
Jul 13
Aug 13
Sep 13
Oct 13
Nov 13
Dec 13
Jan 14
Feb 14
Mar 14
Apr 14
May 14
Jun 14

Jul 14
Aug 14
Sep 14

c) Coughs and colds interquartile range normalised RMSE
20-

) Hay fever interquartile range normalised RMSE
0.03-

o

L 0.02-

(%)
=
T 0,01-

igrnRMSE
¢

(

o
o

Aug 13
Sep 13
Oct 13
Nov 13~
Dec 13
Jan 14
Feb 14
Mar 14
Apr 14
May 14
Jun 14
Jul 14
Aug 14
Sep 14
May 13~
Jun 13
Jul 13
Aug 13
Sep 13
Oct 13
Nov 13
Dec 13~
Jan 14
Feb 14~
Mar 14
Apri14~

May 14~

Jun 14
Jul14 ~

Aug 14~

Sep 14

May 13~
Jun 13
Jul 13 ~

model_set Dynamic model — Static model model_set Dynamic model — Static model

Figure 2. a) Coughs and colds median sales and predictions; b) Coughs and colds R2
performance; ¢) Coughs and colds interquartile range nRMSE; d) Hay fever median sales and
predictions; e) Hay fever R2 performance; f) Hay fever interquartile range nRMSE

The dynamic modelling approach generally performs better than the static model, however a time lag
occurs with the abrupt changes in sales (August 2013 and 2014 are over predicted). nRMSE is highest
for the dynamic model at these time lags. The models struggle to predict the peaks; however, this is
constrained by only the availability of 1 year of training data. A greater coverage of historically data

could improve predictive performance with seasons identified.

Exploring the feature importance across our models allows an evaluation of the predictors of self-
medication (figure 3). Only the top 8 features (top 10%) are considered since they have the largest
effect on the reduction of model error. For both categories, previous month product and related
product purchasing are the most important features consistently. Month and buying season are
important as temporal identification features. Distinct seasonality of hay fever purchasing is shown
with buying season most important across 7 months (figure 3b). Temperature is also observed as
consistently high ranking suggesting a climate influence. Sulphur dioxide pollution level is the only

environmental predictor here for coughs and colds. No social predictors were observed as important

here.



Comparably feature importance ranking is erratic for hay fever likely due to the greater seasonality of
this product. Mean age of loyalty card holders is higher ranking suggesting this product group is
sensitive to age. The largest number of changes in rank is seen for hay fever (August 2013 and 2014)

corresponding with the highest nRMSE where purchasing medians decline for the off season.
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Figure 3. Feature importance rank change across models for 8 most important features

In order to obtain further context from XGBoost models, Accumulated Local Effect plots (Apley,
2016) are used to understand associations between important features and the outcome in black box
methods, particularly when correlation is present between predictors (Apley, 2016; Molnar, 2019).
Accumulated Local Effect plots vary a feature across its range to consider its association with the

outcome expressed as ‘delta’. Again, only the top 10% of features are considered due to the highest

reduction of error (and therefore influence) on the models.

Figure 4 shows ALE for coughs and colds. As expected, purchasing of product and related product
features (cough and colds proportion, cough value and pain relief proportion) are all positively
associated with an increase in delta. Similarly (as expected) buying season is positively associated
with purchasing. Seasonality is observed within the feature ‘month’ in-line with typical seasons
(Heikkinen and Jérvinen, 2003). Positive delta is seen for Autumn to Winter, and negative for Spring

to Summer. The largest increase is found where delta is highest, observed in December. This would



suggest there is a large positive increase in proportion of customer purchasing in December. Age
displays positive delta for ages between 40-60 for coughs and colds. Cold incidence rate is known to
be “inversely proportional to age” (Heikkinen and Jarvinen, 2003, p52), therefore it is likely that
purchasing is for significant others (particularly children). Temperature is relatively static with small
fluctuations from 0 delta; however, delta is slightly elevated between 2.5-7.5°C. Coughs and colds are
associated with a number of viruses that have varying seasonality which would likely explain the

stability of temperature (Heikkinen and Jarvinen, 2003).

Increased previous month product and related product features (hay fever proportion, hay fever value,
sun preps proportion, pain relief proportion) are again associated positively for hay fever (figure 5).
Seasonal trends are observed, with buying season positively associated, and months Spring to
Summer having large positive delta. Age, again as seen in coughs and colds, exhibits positive delta
between 35-60 years old. It is possible these age ranges are purchasing for dependent others (i.e.
parents purchasing for children), as decreasing and negative delta is viewed outside this range (Gray,
Boardman and Symonds, 2011). For hay fever, a positive delta is observed between temperature
ranges 10-15°C and at 19°C, suggesting these temperatures increase sales. These ranges relate to
optimal temperature ranges for trees (10-15°C), and 19°C is within the optimal range for grass species

to release pollen (MetOffice, 2018a).
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Figure 4. Accumulated local effects plot for 8 most important features (coughs and colds)
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Figure 5. Accumulated local effects plot for 8 most important features (hay fever)

Discussion

Using transaction level loyalty card data has provided valuable insights into the temporality of over
the counter purchasing for the product groups considered. Distinct seasonality in purchasing was
apparent with coughs and colds products more common in Winter and hay fever in Summer.
Modelling trends in purchasing confirmed the importance of seasonality, as well as temperature and
median age. We also found that our dynamically retrained modelling approach was in general better at
predicting purchasing behaviours than a static approach. Our results demonstrate the potential of

using such data for population health surveillance and forecasting.

Buying season is an important variable for both products but is ranked higher for hay fever than
coughs and colds which is likely due to the more distinct purchasing season. This indicates positive
influence (shown in ALE plots figures 4-5) of known coughs and colds season (Heikkinen and
Jarvinen, 2003) and pollen season for hay fever (MetOffice, 2018b). The observed epidemiological
trend of the common cold “increases rapidly in autumn, remains fairly high through winter and
decreases again in spring” (Heikkinen and Jarvinen, 2003, p52). We find that over the counter coughs
and colds purchasing observes the same initial increase and decline in Autumn and Winter, however
we also observe an additional peak in Winter (shown figure 1). The large increase in December (and
highest Delta (figure 4)) may relate to a lag from Autumn (buying when needed), but possibly also

preparatory purchasing for Winter, particularly as January and February have purchase decline. The



less defined seasonality within purchasing (i.e. no clear buying or prolonged off-season) is likely
attributable to the amount of associated viruses and respiratory ailments that have varying seasons

(Heikkinen and Jarvinen, 2003).

Forecasting hay fever is notoriously difficult as the season varies substantially from year to year
(Davies and Smith, 1973). Our approach offers new information of the buying season of hay fever
products. We observe peak purchasing between June and July, which concurs with historically
observed peaks in early June (Davies and Smith, 1973) and widely disseminated information to the
public (MetOffice, 2018c). We observe a purchasing season from April to September, coinciding with
seasonal temperatures which are likely to affect purchasing. Temperatures between 10 and 15°C have
a positive delta (figure 4.5) and at 19°C increase is observed, relating to optimal pollen release
temperatures (MetOffice, 2018a). The inclusion of a seasonality feature based on public advisory
information (e.g. MetOffice (2018c¢)) increased model performance, highlighting influence on

purchasing.

Environmental features were important reflecting the seasonality of products (increasing performance
when included). Temperature is highly ranked for both products which contrasts to research
suggesting weather does not bring performance improvement over historical information when
predicting sales (Zylius, Simutis and Vaitkus, 2015). Temperature plays differing roles for our
outcomes. For hay fever, it is a proxy variable that correlates to the production of pollen (although is
directly driving that production hence indirectly influencing hay fever). In contrast, respiratory
conditions (e.g. cold viruses and influenza) are influenced by colder weather (Heikkinen and Jérvinen,
2003). We did not detect strong associations though for our other environment measures including air
quality with only Sulphur Dioxide ranking in the top 10% of features for coughs and colds. This is
despite evidence demonstrating that poor air quality is a determinant of both hay fever (e.g. PM10)
and respiratory conditions associated with coughs and colds (Hajat et al., 2001; Charpin and Caillaud,
2017).

We did not find any evidence in the importance of any social or demographic predictors. This was
surprising since previous research has demonstrated the importance of social inequalities in self-
prescribed medicine behaviours (i.e. lower socioeconomic status groups being less likely to self-
medicate) (Green et al., 2016). Despite this, the inclusion of these predictors brought model
performance improvement highlighting some (albeit small) predictive importance. Median age of
loyalty card holders in areas was found to be important. The result reflects that people aged 35-60
years had the highest proportion of medicine purchasing (and positive Delta in ALE plots), however
this age range has been found to exhibit purchasing for dependent others or replenishing family

medicine stock (Gray, Boardman and Symonds, 2011).



A number of limitations are present within this research. The limited time series data used (2012 to
2014) constrains historical training data to 1 year, limiting the quality of training and therefore
predictions. The dynamic models show that retraining improves capturing trends, however nRMSE
shows that where large differences occur compared with previous years the model performs poorly.
Our model therefore presents more of a proof of concept for potential usage in a predictive
surveillance model. Greater use of historical data could provide a feasible implementation for utilising
over the counter product sales as an early indicator of disease trends, however there are many possible
obstacles (e.g. ethical concerns and data linkage between multiple retailers and health records).
Purchasing information does not equate to consumption of medicines and is a key limitation of these
data. However, sales data have been shown to correlate to disease incidence rates highlighting value
(Magruder et al., 2004). Model performance was not perfect and would stress the need for utilising
such data alongside other (more traditional) data to fully understand trends in self-prescribed
medications. Further involvement of environmental features such as pollen within the hay fever
models (e.g. Ito et al., (2015)) would likely bring performance gain however access to such data is
limited. Interpretation of our results must be careful to avoid committing any ecological fallacies.
Inferences of our results can only be made at Local Super Out Area level, limiting the application of
our models. One opportunity to extend the model would be to explore the spatial patterns in
purchasing over time and how they relate to disease outbreaks (e.g. Magruder (2003)). We also only
focus on residence location and do not account for movement or spatial exposure (e.g. commuting)

(Hanigan, Hall and Dear, 2006).

Conclusion

Presented are insights from a novel application of machine learning with new forms of data via a
scalable data science approach for predicting trends in purchasing of self-medication. We build on
previous over the counter medicine applications with the inclusion of loyalty card records (Magruder,
2003; Magruder et al., 2004). The application could act as an early indicator of ailment incidence that
could complement existing methods (e.g. Santillana et al., (2014)), and may offer cheaper and more
efficient means of data collection than existing disease surveillance systems that employ traditional

health data (Ginsberg et al., 2009).
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